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Abstract

This paper formulates the learning of support vector machines (SVMs) as a linear programming problem. An
SVM has the property that it chooses the minimum number of data points to use as the centres for the Gaussian
kernel functions in order to approximate the training data within a given error. A linear programming (LP)
based method is proposed for solving both regression and classification problems. Examples of function ap-
proximation and class separation illustrate the efficiency of the proposed method. In addition, the paper explores
the possibility of using SVMs with radial basis function kernels to compress an image. Our results show that
image compression of around 20:1 is achievable while maintaining good image quality.
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1. Introduction

Support Vector Machine (SVM) is a new type of
learning machine that keeps the training error fixed
(ie., within given boundaries), and minimises the
confidence interval, ie., machine capacity. SVM that
uses quadratic programming in calculating support
vectors has very sound theoretical basis and it works
almost perfectly for not too large data sets. When the
number of points is large (say more then 2000), the
QP problem becomes extremely difficult to solve
with standard methods and program solvers.

The possible application of SVMs (i.e., neural net-
works) for image compression is based on the fact
that most images contain spatial redundancy due to
the high probability that the adjacent pixels will be
of a similar colour. As images are two dimensional,
a colour surface can be created from the image
which maps the (x, y) coordinates of a pixel to a spe-
cific colour.

The compression problem can be stated as how to
model the colour surface using the fewest parame-
ters while still retaining a good approximation of the

surface. This can be formulated as a nonlinear re-
gression problem as we are attempting to model a
function of the form C= f(x, y) where C stands for a
colour value.

Recently, a lot of work was done on implementing
linear programming (LP) approach in support vec-
tors selection. Kecman (1999) suggested optimal
subset selection by using LP in solving regression.
Zhang and Fuchs (1999) proposed an LP based
method for selecting the hidden neurones at the ini-
tialisation stage of the multilayer perceptron net-
work. One of the very first implementation of
mathematical programming to statistical learning
from data was the paper Charnes, Cooper and
Ferguson (1955). Arthanari and Dodge (1993) gave
the summary and very good presentation of mathe-
matical programming in statistics.

An early work on LP based classification algorithms
dates back to the middle of 1960s (see Mangasarian
1965). Recently, a lot of work has been done on im-
plementing LP approach in support vectors selection
(Smola et all 1998, Bennett 1999, Weston et all
1999, and Graepel et all 1999). They are all close to
the SVM constructive algorithms.
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Interestingly, the first results on the L1 norm esti-
mators were given as early as 1757 by Yugoslav
scientist Boskovic (see Eisenhart, 1962).

Here, the slight difference in respect to the standard
SVM learning (that uses QP programming) is that
instead minimizing L2 norm of the weight vector
||w||2 we will minimise L1 norm ||w||1 in an LP ap-
proach here. In Section 2 we develop methods for
solving regression problems by LP. In Section 3 LP
approach is expanded for solving classification
tasks. Section 4 is devoted to simulation examples,
and some conclusions are drawn in Section 5.

2. Linear Programming in Regression

Minimisation of the 2L  norm equals minimizing
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the QP type of problem that leads to a maximisation
of a margin M (Vapnik 1995). The application of the
LP approach for a subset (support vectors, basis
functions) selection results in a very good perform-
ance of NN and/or SVM. At the same time there is
no theoretical evidence either that the minimisation
of the L1 norm or L2 norm of the weight vector w
produces superior generalisation.

Regression problem solving could be formulated in
many different ways. Here we show two approaches.
First method is a one-objective function minimisa-
tion problem and the second one is multi-objective
function minimisation task.

2.1 Sparseness regularisation method

Our problem is to design a parsimonious NN con-
taining less neurones than data points. Such a
sparseness of a NN or SVM is controlled by mini-
mizing L1 norm of the weight vector w. At the same
time, we want to solve y = Gw such that || Gw – y ||
is small for some chosen norm. In order to perform
this task we formulate the regression problem as
follows.

Find a weight vector

  w = arg min||w||1,  subject to,

|| Gw – y ||∞∞∞∞ ≤ ε, (1)

where ε defines the maximally allowed error (that is
why we used L∞ norm) and corresponds to the ε-
insensitivity zone in SVM. This constrained optimi-
sation problem can easily be transformed into a
standard linear programming form. First, recall that

||w||1 = 
1
| |

P

pp
w

=∑ , and this is not an LP problem

formulation where we typically minimise cTw =

c w
p pp

P

=∑ 1
 and c is some known coefficient vector.

Thus, in order to apply the LP algorithm we use the
standard trick by replacing wp and | wp | as follows

    wp = wp
+  - wp

− (2a)

  |wp| = wp
+  + wp

− (2b)

where wp
+  and wp

−  are the two non-negative vari-

ables, ie., wp
+  ≥ 0, wp

−  ≥ 0. P equals to the number

of the training data. Note, that the substitutions done
in (2) are unique, ie., for a given wp there is only one

pair (
p

w+ , 
p

w− ) which fulfils both equations. Fur-

thermore, both variables can not be bigger than zero
at the same time. In fact there are only three possible

solutions for a pair of variables (
p

w+ , 
p

w− ), namely,

(0, 0), (
p

w+ , 0) or (0, 
p

w− ). Second, the constraint in

(1) is not in a standard formulation either and it
should also be reformulated as follows. Note that ||
Gw – y ||∞ ≤ ε in (1) defines an ε-tube inside which
should our approximating function reside. Such a
constraint can be rewritten as

 y - ε 1 ≤ Gw ≤ y + ε 1 (3)

where 1 is a (P, 1) column vector filled with ones.
(3) represents a standard set of linear constraints and
our LP problem to solve is now the following.

Find a pair

(w+ , w− ) = arg min ( )w w
p p

p

P
+ −

=

+∑
1

,

subject to,

y - ε 1 ≤ G(w+  - w− ) ≤ y + ε 1, (4a)

w + ≥ 0,  w − ≥ 0,       (4b), (4c)

where w +  = [w1
+  w2

+   . . . wP
+ ]T and

w−  = [
1

w−  
2

w−   . . . 
P

w− ]T.

LP problem (4) can be presented in a matrix-vector
formulation suitable for an LP program solver as
follows
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w + ≥ 0,  w − ≥ 0, (6), (7)

where both w and c are the (2P, 1)-dimensional
vectors. c = 1(2P, 1), ie., c is a (2P, 1) vector filled

with ones and w = [w + T  w − T]T. Examples that illus-

trate the efficiency of the method are given in the
Section 4.

Instead of minimizing ||w||1 that enforces a sparse-
ness of the model only, we have an additional re-
quirement that the Chebyshev norm 

∞− yGw  is

minimal as well. In other words, we want to mini-
mize the ε-tube, ie., we want to minimize the resid-
ual or error function.

Thus, given data samples, we try to obtain a small
value of risk by minimizing regularised risk func-
tional

Rreg =  1 ||w||1 + C
∞−Gw y  (8)

It can be shown [8] that this expanded sparseness
regularisation method is really equivalent to the
sparseness method given in (4).

Since both methods essentially lead to the same op-
timal solutions we present only first method in the
simulation examples section.

3. Linear Programming in Classification

The supervised learning algorithm embedded in a
learning machine (which can be any of these - mul-

tilayer perceptron NN, SV machine, RBF network or
neuro-fuzzy model) typically learns the input-output
relationship (dependency or function) f(x) by using a
training data set D = {[ x(i), y(i)] ∈ ℜn × ℜ, i =
1,...,P} consisting of P pairs (x1, y1), (x2, y2), …, (xP,
yP), where the inputs x are n-dimensional vectors x
∈ ℜ n and the labels (or system responses) y ∈ ℜ are
continuous values for regression tasks and discrete
(eg., Boolean) for classification problems. Here be-
cause of space constraints we do not present a full
derivation of the LP based learning in the case of
classification. Instead, we give only the final expres-
sions for designing linear and nonlinear separation
boundaries between classes.

LINEAR CLASSIFICATION:

The LP problem to solve is,

1 1
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where decision function is given as

( ) Tf b= +x w x     (11)

and ξi measures the deviation of a data point from
the ideal condition of pattern separability. It corre-
sponds to the slack variable in classic QP learning in
SVMs.

A matrix notation for a two-dimensional feature
vector x that includes a bias b = 1 as a 3rd component
of x is given below,
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such that,
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where C is some trade-off constant or a penalty pa-
rameter that should be chosen by user during the
design stage, ξ is a (P, 1) vector of deviations and I
is an identity (P, P) matrix.

NONLINEAR CLASSIFICATION:

Classes that are not only overlapped, but have non-
linear separating boundaries, would be separated by
a NN or SVM having hidden layer of neurones.
Such a classifier is still linear but in an imaginary
hidden space. Now, in a nonlinear case the LP for-
mulation of the problem is as follows,
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such that,
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where G is a so-called design or kernel matrix, 1(P,
1) is again a row vector filled with ones and P (same
as previously) represents the number of the training
data points. In the formulation above, a design ma-
trix G is augmented by a bias column, ie., G is an
(P, P +1) matrix.

4. Simulation Examples

NONLINEAR REGRESSION

In Fig 1, the SVs selection based on an LP learning
algorithm (5) is shown for a Hermitian function f(x)
= 1.1(1 – x + 2x2)exp(-0.5x2) polluted with a 10%
Gaussian zero-mean noise. The training set con-
tained 41 training data pairs and the LP algorithm
has selected 10 SVs shown as encircled data points.
The resulting graph is similar to the standard QP
based learning outcomes.

Figure 1. Nonlinear regression: The SVs selection based on
an LP learning algorithm (5). Hermitian function f(x) = 1.1(1
– x + 2x2)exp(-0.5x2) polluted with a 10% Gaussian zero-
mean noise (dashed). The training set contains 41 training
data points (crosses). An LP algorithm has selected 10 SVs
shown as encircled data points. Resulting approximation
curve (solid). Insensitivity zone is bounded by dotted
curves.

It was interesting to see differences between QP and
LP based methods. We investigated sinus function
polluted with 20% noise. In QP solution, an insensi-
tivity zone was chosen to be e=0.1, C=20⋅106 and
the Gaussian bells parameter σ =3∆cij, where ∆cij

denotes the distance between the adjacent centres of
the basis functions.  Simulations were repeated on
randomly selected data set hundred times. Compari-
son of QP and LP based training algorithms shows
that as number of training data increases computa-
tional time becomes significantly smaller for LP
then for QP and that the number of chosen support
vectors for LP is almost half their number for QP.
However, accuracy is slightly better for QP based
algorithms.

SVM Compression Method

J. Robinson proposed in [12] to use NN in image
compression treating such a problem in original
color domain as a nonlinear regression (approxima-
tion) problem. His work is still in progress trying to
apply QP based SVM learning for these tasks. Here
we present some results on applying LP learning
algorithm for image compression. We used popular
benchmark - Lena image here. The image is subdi-
vided into 8 × 8 blocks (64 pixels per block). Each
block is used as training data for a SVM. In a 256 ×
256 image there are 1024 blocks, thus 1024 sub-
networks will be produced. The value of design pa-
rameters ε and σ depends highly on the 'colour sur-
face' that is to be modelled by the SVM.
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SVM Results

The Lena picture was used as a test image and some
of the LP method results are presented in figure 2. In
the higher compression image, a ‘blocking’ effect
can be seen. This is caused by the average colour of
each block being different.

Figure 2. The benchmark 256 × 256 Lena picture com-
pressed for various values of error and σ.

NONLINEAR CLASSIFICATION

Results for a nonlinear classification example are
presented through a decision boundary estimation of
the data belonging to two different classes separated
by x2 = x1

2. Kernel (i.e., basis) function is a standard
Gaussian RBF G(xi, cj = xj) = exp(-0.5|| xi -
cj||

2/(kS∆c)2), and parameter that defines its width kS

=5. Resulting decision boundary, as seen in Fig 3, is

almost parabolic and data are correctly classified.
For smaller values of coefficient kS, kernel function
has narrower bells and algorithm picks up more SVs.
In that case, decision boundary is more data depend-
ant.

Figure 3. Nonlinear Classification, i.e., Pattern Recognition:
The SVs selection based on an LP learning algorithm.
Separation boundary is a parabola (dashed). Data are
shown as crosses. Selected SVs are shown as encircled
crosses. Resulting separation curve (solid).

In addition, we show results for a nonlinear classifi-
cation example through a decision boundary estima-
tion of the data belonging to male and female faces.

Figure 4. Nonlinear Classification, ie., gender recognition
problem. In the upper picture standard male and female
faces are presented. Our task was to distinguish sexes
upon 18 dimensional data set.

Brunelli R., Poggio T. [3], developed NN - Hyper
Basis Function (BF) Networks for Gender Classifi-
cation method for solving nonlinear classification
problems. On the same data set as us, for gender
recognition problem they had following results: on
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the vectors of the training set they were 90% correct,
on novel faces of people in the training set 86% cor-
rect and on faces of people not represented in the
training set 79% correct. Human performance is
90% correct. We had on the novel faces of people
not represented in the training set with QP based
method very good precision, 96.4% were correct. On
the novel faces of people not represented in the
training set and classified with LP based method we
had reasonably good correctness rate - 92,8% were
correctly classified.

Same as in previous example, for smaller values of
coefficient σ, kernel function has narrow bells and
algorithm picks up more SVs. Thus, decision bound-
ary is more data dependent.

5. Conclusions

In this paper, we present an LP approach for solving
nonlinear regression and classification tasks. The
results that we have got in Lena example are prom-
ising but we still have blocking effect and matrices
are not sparse. The method proposed here is still in
the development phase. The approach and results
show that an LP based learning (that resulted from
the minimisation of the L1 norm of the weight vec-
tor) produces sparse networks. This may be of par-
ticular interest in modern days applications while
processing a huge amount of data and when the
contemporary QP solvers seem to be not that suit-
able. We primarily refer to the following possible
benefits of applying LP based learning: LP algo-
rithms are faster and more robust than QP ones,
they tend to minimise number of weights (meaning
SV) chosen, they naturally incorporate the use of
kernels for creation of nonlinear separation and re-
gression hypersurfaces in pattern recognition and
function approximation problems respectively.
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