Vojislav KECMAN's Book
LEARNING AND SOFT COMPUTING

Support Vector Machines, Neural Networks and Fuzzy Logic Models

Published by The MIT Press, Cambridge, MA, 2000
ISBN 0-262-11255-8

608 pp., 268 illus., $US60.00/£41.50 (cloth)
THE COMPLETE DESCRIPTION OF (i.e., THE MANUAL FOR) SIMULATION EXPERIMENTS

IS GIVEN IN THE BOOK

The author strongly recommends reading of, and going through, all the theoretical presentations in the book BEFORE running the corresponding simulation experiments!

CHAPTER 1

The simulation experiments in chapter 1 have the purpose of familiarizing the reader with the field of interpolation/approximation, i.e. (nonlinear) regression. (Nonlinear regression and classification are the core problems of the whole soft computing anyway). The programs that are used in chapter 2 on support vector machines cover the fields of both classification and regression by applying the SVM technique. There is no need for manual here because all routines are 'simple' (if there is anything simple when programming is concerned). The experiments are aimed at reviewing many basic facets of regression (notably, problems of over- and underfitting, influence of noise and smoothness of approximation). Note that first two approximators are classic ones. Namely, they are one-dimensional algebraic polynomials and Chebyshev polynomials. The last three belong to the RBF approximators. They are linear splines, cubic splines and Gaussian radial basis functions. Finally, there is a fuzzy logic modeling toolbox containing several standard membership functions.

Be aware of the following facts about the program Aproxim:

1. It is developed for interpolation/approximation problems.

2. It is designed for one-dimensional input data (y = f(x)).

3. It is user friendly, even for beginners in using Matlab,

but you must cooperate. It prompts you to select, to

define and/or to choose different things.

CHAPTER 2

The simulation experiments in chapter 2 have the purpose of familiarizing the reader with support vector machines. Two programs cover both the classification (svclass.m) and the regression (svregress.m) by applying the SVMs technique. There is no need for extended manual here because both programs are user-friendly. The experiments are aimed particularly at understanding basic concepts in SVMs fields. This concerns primarily the notions of support vectors, decision function, decision boundary, indicator function and canonical (hyper)plane. We used 1- and 2-dimensional patterns in the case of classification and merely R1 -> R1 mappings in the case of regression for the sake of visualization of the fundamental basic concepts. We highly recommend meticulous analysis of all resulting graphs that were made with great care and that nicely display possibly difficult to understand basic concepts and terminology used in SV machines field.

Be aware of the following facts about the programs svclass.m and svregres.m.

1. They are developed for classification and regression tasks respectively.

2. They are designed for 1-D and 2-D classification and 1-D regression problems.

3. They are user-friendly, even for beginners in using Matlab, but you must cooperate.

It prompts you to select, to define and/or to choose different things.

CHAPTER 3

We have not provided any program for learning and modeling by using perceptron or linear neuron. They are the simplest possible learning paradigms anyway, and it may be very useful that the interested reader write his/hers own routines starting with them. Write numerical implementations of the perceptron learning algorithms as given in Table 3.1. Design also your own learning code for linear neuron. Start with Method 1. It is just about calculating pseudoinversion of an input data matrix XT. Implement Method 4 to be closer to the spirit of an iterative learning. It is online, recursive, first order gradient descent method. Generate a data set consisting of a small number of vectors, i.e., training data pairs in one- or two-dimensions, each belonging to one of two classes. There are many learning issues to analyze.

1. Experiment with non-overlapping classes and perceptron learning rule first. Start with random initial weight vector (it can also be w0 = 0), keep it constant and change the learning rate to see whether an initialization has any impact on final separation of classes. Now keep a learning rate fixed and start each learning cycle with different initial weight vectors.

2. Generate classes with overlapping and try to separate them by using perceptron.

3. Repeat all the calculations above by using your linear neuron code. In particular, check the influence of learning rate on the learning process now.

4. Generate data for linear regression and experiment with linear neuron modeling capacity.

Play with different noise level, learning rates, initialization of weights and similar.

a) In particular, it may be very useful to compare method 3 ('ideal' gradient learning in batch version) with method 4 (on-line version of a gradient method). Compare differences while changing learning rate.

b) Write a numerical implementation of a recursive least squares algorithms as given in Tables 3.3 and 3.4. Compare performances of the RLS with LMS algorithm in terms of number of iteration and computing times on a given data set.

5. After getting some expertise repeat all the examples from this chapter by applying your software.

General advice in designing programs for iterative learning is that you should always control what is happening with your error function E. Start with using sum of error squares and display always both the number of iteration steps and the change of error E after every iteration. Store the error E and plot its changes after learning. While solving 2-D classification problems, it may also be very useful to plot both the data points and decision boundary after every iteration.

CHAPTER 4

The simulation experiments in chapter 4 have the purpose of familiarizing the reader with the EBP learning in multilayer perceptrons aimed at solving one-dimensional regression problems. However, learning algorithm is written in a matrix form, i.e., it is a batch algorithm, and it works for any number of inputs and outputs. We work with one-dimensional examples merely for the sake of visualization in the ebp.m routine.We prepared three examples and you may make as many different examples as needed. To run any of examples type ebp.m and follow the instructions. See the description of all input variables in the program ebp.m. The experiments are aimed at reviewing many basic facets of the EBP learning (notably, learning dynamics in dependence of the learning rate eta, smoothing effects obtained by decreasing the number of HL neurons, influence of noise and smoothing effects of early stopping). Important part is to analyze the geometry of learning, i.e., how the HL AFs are changing during the course of learning.

Be aware of the following facts about the program ebp.m:

1. It is developed for one-dimensional nonlinear regression problems.

2. However learning part is in a matrix form and it can be used for more complex

learning tasks. If you want to perform those, you should rewrite the input, test and graphical parts of program.

3. The learning is the gradient descent with momentum.

4. It is user friendly, even for beginners in using Matlab, but you must cooperate.

Read carefully the description part of the ebp.m routine first. Giving the input data will be easier. The ebp.m routine prompts you to select, to define and/or to choose different things during the learning.

5. Analyze carefully the graphic windows presented. There are a lot of answers to

many issues of learning in them.

CHAPTER 5

The simulation experiments in chapter 5 have the purpose of familiarizing the reader with the regularization networks that are better known as the RBFs networks. The program rbf.m is aimed at solving 1-dimensional regression problems by using Gaussian basis functions. Learning algorithm is a standard RBFs network batch algorithm given by equation (5.16). We work with one-dimensional examples merely for the sake of visualization of all results.In running simulation just follow the popup menus and select the inputs you want. The experiments are aimed at reviewing many basic facets of the RBF batch learning (notably, influence of the Gaussian bells shapes on the approximation, smoothing effects obtained by decreasing the number of HL neurons, smoothing effects obtained by changing the regularization parameter lambda and influence of noise).

Be aware of the following facts about the program rbf.m:

1. It is developed for one-dimensional nonlinear regression problems.

2. However learning part is in a matrix form and it can be used for more complex

learning tasks. If you want to perform those, you should rewrite the input, test and graphical parts of program.

3. The learning takes place in an off-line or batch algorithm given by (5.16).

4. rbf.m is user friendly program, even for beginners in using Matlab, but you must

cooperate. Read carefully the description part of the rbf.m routine first. The program prompts you to select, to define and/or to choose different things during the learning.

5. Analyze carefully the resulting graphic windows. There are many answers to

various issues of learning and modeling by using RBFs networks in them.

CHAPTER 6
The simulation experiments in chapter 6 have the purpose of familiarizing the reader with the fuzzy logic modeling tools. There are two user-friendly programs for performing a variety of fuzzy modeling tasks. They can be found in the two directories:

fuzzy1 and fuzzy2.

Fuzzy1 can be used to develop other fuzzy logic models while fuzzy2 is merely demo program devoted to simulation of a given problem. Thus the reader can not create his/hers own models in a fuzzy2 routine. However, s/he can explore various interesting aspects of FL modeling by using a fuzzy2 model. Both programs have nice graphic interface and they are user-friendly. This means that the user merely follows the popup menus and graphic windows.

You can perform various experiments that are aimed at reviewing many basic facets of the fuzzy logic modeling (notably, the influence of the membership functions shape and overlap on the accuracy of model, the influence of the rule basis on the model performance and the impact of the inference and defuzzification operators on the modeling final results.
