
950 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 4, JULY 2003

Combining Support Vector Machine Learning With the
Discrete Cosine Transform in Image Compression

Jonathan Robinson and Vojislav Kecman

Abstract—In this paper, we present a novel algorithm for the
application of support vector machine (SVM) learning to image
compression. The algorithm combines SVMs with the discrete co-
sine transform (DCT). Unlike a classic radial basis function net-
works or multilayer perceptrons that require the topology of the
network to be defined before training, an SVM selects the min-
imum number of training points, called support vectors, that en-
sure modeling of the data within the given level of accuracy (a.k.a.
insensitivity zone). It is this property that is exploited as the basis
for an image compression algorithm. Here, the SVMs learning al-
gorithm performs the compression in a spectral domain of DCT
coefficients, i.e., the SVM approximates the DCT coefficients. The
parameters of the SVM are stored in order to recover the image.
Results demonstrate that even though there is an extra lossy step
compared with the baseline JPEG algorithm, the new algorithm
dramatically increases compression for a given image quality; con-
versely it increases image quality for a given compression ratio.
The approach presented can be readily applied for other modeling
schemes that are in a form of a sum of weighted basis functions.

Index Terms—Image compression, kernel machines, support
vector machine (SVM).

I. INTRODUCTION

T HE use of neural networks in image compression is not
new. Reference [1], for example, describes an algorithm

using backpropagation learning in a feedforward network. The
number of hidden neurons was fixed before learning and the
weights of the network after training were transmitted. The
neural network (and hence the image) could then be recovered
from these weights. Compression was generally around 8:1
with an image quality much lower than JPEG.

More recently, Amerijckxet al. [2] presented a compression
scheme based on the discrete cosine transform (DCT), vector
quantization of the DCT coefficients by Kohonen map, differ-
ential coding by first-order predictor and entropic coding of the
differences. This method gave better performance than JPEG for
compression ratios greater than 30:1.

The use of support vector machines (SVMs) in an image com-
pression algorithm was first presented in [3]. This method used
SVM to directly model the color surface. The parameters of a
neural network (weights and Gaussian centers) were transmitted
so that the color surface could be reconstructed from a neural
network using these parameters.

The compression algorithm presented here follows from the
work in [3]. In [3], SVM learning was used to directly model
the color surface. In the algorithm presented in this paper, we
apply SVM learning to an image after mapping the image into

Manuscript received June 5, 2002; revised March 6, 2003.
The authors are with the School of Engineering, University of Auckland,

92019 Auckland, New Zealand.
Digital Object Identifier 10.1109/TNN.2003.813842

the frequency domain. Compression rate and image quality are
much improved as the results will demonstrate.

This paper is organized as follows: Section II gives an
overview of SVM learning. As the DCT is the part of the
algorithm proposed, Section III discusses the basics of a
DCT. Section IV states the problem and introduces the novel
compression algorithm. Section V presents the results with
comparison to JPEG compression with details on speed of com-
pression. Finally, concluding remarks are given in Section VI.

II. SVM L EARNING

SVMs have become very popular tools for learning from ex-
perimental data and solving various classification, regression
and density estimation problems. These novel soft models are
dubbed kernel machines too. One way of looking at them may
also be as the new learning method for a radial basis function
(RBF) neural network. Initially developed for solving classifi-
cation problems, support vector (SV) techniques can be success-
fully applied in regression, i.e., for functional approximation
problems ([4], [5]). It is this application we will exploit here.
Unlike pattern recognition problems, where the desired outputs

are discrete values, e.g., Boolean, here we deal withreal-
valuedfunctions. Now, the general regression learning problem
is set as follows: the learning machine is giventraining data
from which it attempts to learn the input-output relationship
(dependency, mapping, or function) . A training data set

, consists of pairs
, where the inputs are -dimen-

sional vectors and system responses , are con-
tinuous values. The SVM considers approximating functions of
the form

(1)

where the functions are called basis functions. Equation
(1) is an SVM model where is the number of SVs. In the case
of SVM regression, one uses Vapnik’s linear loss function with
-insensitivity zone as a measure of the error of approximation

if
otherwise.

(2)
Thus, the loss is equal to zero if the difference between

the predicted and the measured value is less than.
Vapnik’s -insensitivity loss function (2) defines an tube.
(Typical graph of a regression problem as well as all relevant
mathematical objects required in learning unknown coefficients

are shown in Fig. 1.) If the predicted value is within the tube
the loss (error or cost) is zero. For all other predicted points

1045-9227/03$17.00 © 2003 IEEE

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 4, JULY 2003 951

Fig. 1. Parameters used in one-dimensional (1-D) SV regression.

outside the tube, the loss equals the magnitude of the difference
between the predicted value and the radiusof the tube. Note
that for , Vapnik’s loss function equals a least modulus
(a.k.a. Huber’s robust loss) function.

In solving regression problems, the SVM performs linear re-
gression in -dimensional feature space using-insensitivity
loss function. At the same time, it tries to reduce model capacity
by minimizing , in order to ensure better generalization.
All these are achieved by minimizing the following functional:

(3)

under constraints

(4a)

(4b)

(4c)

(4d)

where and are slack variables shown in Fig. 1 for measure-
ments “above” and “below” an-tube, respectively. Both slack
variables are positive values and they measure the deviation of
the data from the prescribed-tube. Their magnitude can be con-
trolled by penalty parameter . This optimization problem is
typically transformed into the dual problem, and its solution is
given by

(5)

where and are the Lagrange multipliers corresponding
to and , is the number of SVs and is the
kernel function. Gaussian kernels are used in the compression
algorithm detailed in this paper. The constantinfluences a
tradeoff between an approximation error and the weight vector

norm and it is a design parameter that is typically chosen by
the user through cross validation. Here, we worked with
and all the “softening” of the SVM performance was done by
choosing proper value of the-insensitivity zone. An increase
in penalizes larger errors (largeand) and in this way
leads to an approximation error decrease. However, this can be
achieved only by increasing the weight vector norm . At the
same time, an increase in does not guarantee a small gen-
eralization performance of a model. Another design parameter
which is chosen by the user is the required precision embodied
in an value that defines the size of an-tube (a.k.a -insensi-
tivity zone).

The expansion (5) can also be rewritten in a shape more fa-
miliar to the neural network community as ,
where the matrix is known as the design (or kernel) matrix
and the weight vector (of the kernel expansion) is .

There are a few learning parameters in constructing SV ma-
chines for regression. The two most relevant are the insensitivity
zone and the penalty parameterthat determines the tradeoff
between the training error and Vapnik–Chervonenkis (VC) di-
mension of the model. Both parameters should be chosen by
the user. Increase in means a reduction in requirements on
the accuracy of approximation. It decreases the number of SVs
leading to data compression too. This will be exploited here in
approximating the coefficients of a DCT in a frequency domain.
For a detailed mathematical description of SVMs the interested
reader is referred to [6]–[8].

III. DCT

The DCT is the fundamental process of the JPEG image com-
pression algorithm [9], [10]. The DCT is a transform that maps a
block of pixel color values in the spatial domain to values in the
frequency domain. The DCT can operate mathematically in any
dimension, however an image is a two-dimensional (2-D) sur-
face so the 2-D DCT transform is used. The 2-D DCT is given
by

(6)

where

The DCT is more efficient on smaller images. When the DCT is
applied to large images, the rounding effects when floating point
numbers are stored in a computer system result in the DCT coef-
ficients being stored with insufficient accuracy resulting in de-
teriorated image quality. As the size of the image is increased,
the number of computations increases disproportionately. For
these reasons an image is subdivided into 88 blocks. Where
an image is not an integral number of 88 blocks, the image
can be padded with white pixels (i.e., extra pixels are added so
that the image can be divided into an integral number of 88
blocks). The 2-D DCT is applied to each block so that an 88

952 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 4, JULY 2003

Fig. 2. DCT maps a block of pixel color values to the frequency domain. Note
that the magnitude of the coefficients generally increases the nearer they are to
the top-left coefficient.

matrix of DCT coefficients is produced for each block. This is
termed the DCT matrix. The top left component of the DCT
matrix is termed the discrete cosine (DC) coefficient and can be
interpreted as the component responsible for the average back-
ground color of the block (analogous to a steady DC current
in electrical engineering). The remaining 63 components of the
DCT matrix are termed the “AC” components as they are fre-
quency components analogous to an electrical ac signal. The DC
coefficient is often much higher in magnitude than the AC com-
ponents in the DCT matrix.

The DCT is illustrated in Fig. 2. Each component in the DCT
matrix represents a frequency in the image (the DC compo-
nent representing a frequency of 0). The further an AC com-
ponent from the DC component the higher the frequency rep-
resented. The magnitude of higher frequency components tends
to diminish the higher the frequency represented. Higher fre-
quency components are less visible to the human eye, and it is
this property which is exploited in JPEG and in our algorithm
as these higher frequency components can be attenuated or re-
moved with little noticeable effect on the quality of the image.
Thus the smoothness properties of the SVM can be used to
model the DCT coefficients. The trend in the magnitude of the
DCT coefficient is visible in Fig. 2 The original image block
is recovered from the DCT coefficients by applying the inverse
DCT (IDCT), given by

(7)

where

A. Transformation of the DCT Matrix to 1-D

The elements of the matrix in (6) are mapped using
the zig-zag sequence shown in Fig. 3 to produce a single row
of numbers. That is a single row of numbers is collected as we
follow the zig-zag trail in the DCT matrix. This will produce a
row of 64 numbers, where the magnitude tends to decrease as
we travel down the row of numbers. Coefficients placed next to

Fig. 3. Zig-zag pattern applied to a block of DCT coefficients to produce a
row of 64 coefficients. The importance of each coefficient is proportional to its
position in the row.

each other via the zig-zag mapping tend to be of similar mag-
nitude, thus making the row of coefficients more suitable for
generalization by a SVM.

IV. COMBINING SVM WITH DCT

Here we detail a new algorithm for compressing the AC DCT
coefficients after the discrete cosine transform has been applied
to an image. The algorithm which we call the RKi-1 algorithm,
also includes a preparation step to improve the compression
efficiency.

A. Statement of the Problem

Fig. 4(a) shows the 1-D plot of the AC coefficients for the
matrix shown in Fig. 2 after the zig-zag mapping. This is a plot
of a single row of DCT coefficients after the zig-zag mapping
has been applied to the block in Fig. 2. The DC component
has been removed as it is treated separately leaving the 63 AC
coefficients. The 1-D row of DCT coefficients is used as the
training data for an SVM. In the discussion of SVMs in Sec-
tion II attention was drawn to the fact that an SVM will produce
the minimum number of SVs required to generalize the training
data within a predefined error (the-insensitivity tube). Thus,
we expect that when the row of DCT coefficients are used as
training data for the SVM, a lower number of SVs will be re-
quired in order to recover the DCT coefficients within the pre-
defined error. This is illustrated in Fig. 5 (a) where the DCT
coefficients in Fig. 2 are used as input training data to an SVM.
Fig. 5(b) shows the error when the output is compared with the
original.

In Fig. 5, there are 63 input training points. With the error
(-insensitivity) set to 0.1, 34 training points were chosen by the
SVM as SVs. This can be loosely interpreted as compression of
63:34 or approximately 1.85:1. Although this is not the actual
compression ratio of the compressed image, this ratio illustrates
the reduction in the number of training points.

Examination of the input data (ie the DCT coefficients) re-
veals that the magnitudes of the coefficients are generally de-
creasing as we travel down the row of input data, however the
sign (positive or negative) appears to be random. This has the
consequence that two coefficients next to each other can be of
similar magnitude but opposite sign causing a large swing in the
input data.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 4, JULY 2003 953

(a) (b)

Fig. 4. (a) Typical 8� 8 block of DCT coefficients after the zig-zag mapping to a row of numbers. This plot is not easily generalized by a neural network.
(b) Absolute magnitude of the same data. This plot, while still not ideal, is better generalized by a neural network.

(a)

(b)

Fig. 5. (a) Real values of the row of DCT coefficients input to the SVM. (b) Error of the output subtracted from the desired input. The maximum allowable error
is 0.1.

Fig. 6(a) shows the result when the absolute magnitude of the
DCT coefficients is used as input to the SVM. That is, the neg-
ative signs are ignored and all inputs are treated as positive. It
can be seen that this input data is more suitable for generaliza-
tion by the SVM as less training points are chosen to be SVs. In
this example, the SVM has chosen ten SVs representing a com-
pression of 63:10 or 6.3:1. This is an increase in compression
of around 3.5 times over the preceding example when the real
values of the DCT coefficients were used as training data. We
note also that when the real values were used as training data,
the total accumulated error was 452, and when the magnitudes
were used the total accumulated error reduced to 271. In this ex-
ample, by ignoring the sign of the DCT coefficient when used
as training data to the SVM, the number of SVs has reduced by

70 and the accumulated error has reduced by40 . We
conclude that by simply using the magnitude of the input values

and ignoring the sign, that the compression is substantially in-
creased and the output is a closer match to the desired output
(i.e., the error in the output is reduced). A comparison plot of
the input data when both the real values and the absolute mag-
nitudes is shown in Fig. 4.

If we ignore the sign of each DCT coefficient when used as
input data to the SVM, we are left with the problem of how to
reassign the signs when the DCT coefficients have been recov-
ered. In order to recover the sign, we introduce the inversion bit.

B. Inversion Bit

The inversion bit indicates which of the recovered points
on Fig. 4 (b) should be inverted (i.e., multiplied by1) so
that they are negative. The inversion bit is a single “0” or
“1.” It is the sign of the corresponding input datum. Each

954 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 4, JULY 2003

(a)

(b)

Fig. 6. (a) Absolute magnitude of the row of DCT coefficients input to the SVM. (b) Error of the output subtracted from the desired input. The maximum allowable
error is 0.1.

TABLE I
EXAMPLE OF THE INPUT COEFFICIENTS, THE NEURAL-NETWORK PARAMETERS PRODUCED BY SVM LEARNING

AND THE APPROXIMATED COEFFICIENTSWHERE THESVM INSENSITIVITY HAS BEEN SET TO TEN

input datum has an inversion bit, so for the block shown
in Fig. 2 there are 63 inversion bits. These bits together
form what we term the inversion number. The inversion
number for the matrix of DCT coefficients in Fig. 2 is
110 001 101 001 101 011 101 000 010 010 110 100 011 110 011
000 100 101 011 001 000 After a block has been processed
by the SVM, some the recovered DCT coefficients may have
a magnitude lower than the maximum error defined for the
SVM. If these components had an inversion bit of “1” we can
set this to “0” as the sign of coefficients with small magnitude
has little effect on the final recovered image. Put another way,
inversion bits for very small magnitude DCT coefficients do not
contain significant information required for the recovery of the
image. For example if we define the-insensitivity as 0.1, the
desired value of a particular DCT coefficient is , and the

recovered value 0.04 then we can set the inversion bit to “0” for
this coefficient (rather than “1”) because a recovered value of
0.04 is within 0.1 of the original desired value. The importance
of this property will be detailed in the implementation section.

V. IMPLEMENTATION

The image is first subdivided into 88 blocks. The 2-D DCT
is applied to each block to produce a matrix of DCT coefficients.
The zig-zag mapping is applied to each matrix of DCT coeffi-
cients to obtain a single row of numbers for each original block
of pixels. The first term of each row (the DC component) is sep-
arated so that only the AC terms are left. Not all the terms in the
row of AC coefficients are required since the higher order terms
do not contribute significantly to the image. The higher order

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 4, JULY 2003 955

(a) (b)

Fig. 7. (a) Original block. (b) Recovered block.

Fig. 8. Compression ratio versus SNR for the new method and baseline JPEG using the 512� 512 Lena image.

terms represent higher frequency components of the image and
the higher the frequency the less noticeable the frequency com-
ponent is to the human eye. Because of this we can choose to
take only the first values (typically the first 8–16 values). Ex-
actly how many values are taken is a degree of freedom in the al-
gorithm. SVM learning is applied to the absolute values of each
row of AC terms as described above and the inversion number
for each block is generated. Since we have used Gaussian ker-
nels in the SVM, for each original block the parameters needed
to be stored/transmitted are the Gaussian centers (i.e., the SVs),
the weights and the inversion number to be able to recover the
block. There are no bias terms due to the fact that positive defi-
nite Gaussian kernels have been used which do not require bias.

Original Data: Table I gives a numeric example for the
image block in Fig. 2. The table shows the first 16 coefficients
of the block used as training data to the SVM. Also shown is
the corresponding inversion number, the coefficients identified

as SVs, the approximated (recovered) coefficients, and the
error between each approximated coefficient and the input
training coefficient. In this example, the SVM-insensitivity
has been set to 10. Note that the weights have been rounded to
one decimal place.

A surface plot of the original 8 8 surface is shown along
side the recovered surface in Fig. 7. In this figure, the smoothing
effect of the SVM on the recovered block is visible and has the
effect of applying a high-frequency filter on the block. In the
actual implementation we normalize the pixels in the image be-
tween 0 and 1. When the input was not normalized the weights
tended to be very large (in the order of) and a small variation
in the weight caused by rounding would significantly deterio-
rate the image. When the input is normalized, the weights were
generally in the range 0–1 and taking the first one or two signif-
icant digits of the weight did not adversely affect the quality of
the image. A similar approach was suggested in [11]. Normal-

956 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 4, JULY 2003

izing the image produces weights that are lower in magnitude
(compared with an unnormalized image) and similar in value.
This is an important consideration when encoding the data for
storage/transmission described in the following section.

A. Encoding Data for Storage

For each block, we need to store weights and SVs. The SVs
are the Gaussian centers. In our RKi-1 algorithm we combine
the weights with the SVs so that each block has the same number
of weights as DCT coefficients. For example, if we chose to re-
tain only the first 16 DCT coefficients (discarding the remaining
47 DCT coefficients), then we have 16 weights for each block.
Where a weight has no corresponding SV, we set the value of
the weight equal to zero. That is, the only nonzero weights are
weights for which a training point has been chosen to be an SV
by the SV machine.

The next step is to quantize the weights. By quantizing we
mean that we reassign the value of the weight to one of limited
number of values. To quantize the weights we find the max-
imum and minimum weight values (for the whole image) and
predefine how many quantization levels to use. The number of
quantization levels to use is a degree of freedom in the algo-
rithm. to compute new values for the weights. For example if
the minimum weight is 0 and the maximum is 0.9 and we de-
fine five quantization levels then the weights can only take the
values 0.09, 0.27, 0.45, 0.63, 0.81. Each weight in the image is
reassigned to be the closest value of these quantized values.

The inversion bits are combined with the weights in the fol-
lowing way. An arbitrary number is added to all weights (usu-
ally “1” added to the absolute value of the smallest weight) so
that all weights are positive and nonzero. This arbitrary number
must be stored to be able to recover the weights. Each individual
weight has an associated inversion bit. The inversion bit is com-
bined with its corresponding weight by making the value of the
weight negative if the inversion bit is “1,” positive otherwise.
Where the weight is not an SV the inversion data is discarded.
This introduces a small error when the image is decompressed,
but significantly increases compression (see the results section).

The above steps introduce many zero values into the weight
data. By setting inversion bits from “1” to “0” when the asso-
ciated DCT is less than the error,, we have introduced many
more zeros. A combination of Huffman coding and run length
encoding (RLE) is used to create a binary image file. The quan-
tized weights and the numbers of zeros between nonzero weight
values are Huffman encoded to produce the final binary file.

VI. RESULTS

A. Speed of Compression and Decompression

In RKi-1, compression takes longer than decompression. It
was observed that the higher the compression ratio the quicker
the algorithm was to compress. The opposite is true for the JPEG
algorithm. From a practical user perspective there was little dif-
ference in decompression speed between JPEG and our RKi-1
algorithm.

Compression ratios are computed by the following formula:

(8)

Fig. 9. Subjective comparison of the 512� 512 Lena image compressed
using both the RKi and JPG algorithms. Note that the JPG algorithm would
not compress beyond 64:1.

where file_size is for a binary file containing all parameters and
data required to reconstruct the image.

B. Performance

To objectively measure image quality, the signal-to-noise
ratio (SNR) is used. The SNR is calculated using

SNR
width height

Original Image

Original Image Recovered Image
(9)

Results using the benchmark 512512 Lena image are shown
in Fig. 8 in comparison with the baseline JPEG algorithm. The
JPEG algorithm performs better than the RKi-1 algorithm for
compression ratios up to 22:1 (on this particular image). For
compression ratios beyond this, the RKi-1 algorithm produces

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 4, JULY 2003 957

Fig. 10. Subjective comparison of the 400� 400 Claudia image compressed
using both the RKi-1 and JPG algorithms.

higher quality images for the same compression ratio. While
similar results were obtained for other images, the results for
the Lena image are detailed as it is thede factostandard for
comparing image compression algorithms.

The baseline JPEG algorithm could not compress the
512 512 Lena image grater than 64:1. The RKi-1 algorithm
achieved a compression ratio of 192:1 and still achieved better
image quality than the image compressed using JPEG at 64:1.
This is a much better compression ratio than that obtained in [3]
where SVM was used to directly model the color surface. When
an SVM is used to directly model the surface, compression over
20:1 is not possible without severe deterioration of the quality
of the image [3]. Thus, by approximating DCT coefficients of
an image rather than directly approximating the color surface,
the compression is greatly improved. Fig. 10 shows results for
a subjective comparison on the 400400 Claudia image. The

difference in quality between RKi-1 and JPEG is clearly visible
at higher compression ratios.

The decompressed images are shown in Fig. 9 for subjective
comparison of the RKi-1 algorithm compared with the baseline
JPEG algorithm.

VII. CONCLUDING REMARKS

We have presented a novel image compression algorithm
which takes advantage of SVM learning. The algorithm ex-
ploits the trend of the DCT coefficients after the image has
been transformed from the spacial domain to the frequency
domain via the DCT. SVM learning is used to estimate the DCT
coefficients within a predefined error. The SVM is trained on
the absolute magnitude of the DCT coefficients as these values
require less SVs to estimate the underlying function. The net
result of the SVM learning is to compress the DCT coefficients
much further than other methods such as JPEG. The algorithm
also defines how the original values are recovered by the intro-
duction of the inversion number. The inversion number allows
us to recover the original sign (i.e., positive or negative) of each
DCT coefficient so that combined with the magnitude of the
coefficient as estimated by the SVM, a close approximation to
the original value of the DCT coefficient is obtained in order
to reconstruct the image.

We have presented results showing that the new method
produces better image quality than the JPEG compression
algorithm for compression ratios greater than around 20:1.
We have also shown that large compression ratios (192:1) are
possible with the new method while still retaining reasonable
image quality.

Further work could include applying 2-D SVM learning to
the DCT coefficient matrix. This would bypass the need for the
zig-zag transformation to produce a 1-D set of DCT coefficients.
Further work is also required to explore the results of applying a
varying -tube to the DCT coefficients. In this paper a fixed error
(-insensitivity) has been used. A varying-insensitivity could
be used which reduces in value as a set of DCT coefficients is
traveled along.

REFERENCES

[1] M. H. Hassoun, Fundamentals of Artificial Neural
Networks. Cambridge, MA: MIT Press, 1995.

[2] C. Amerijckx, M. Verleysen, P. Thissen, and J. Legat, “Image compres-
sion by self-organized Kohonen map,”IEEE Trans. Neural Networks,
vol. 9, pp. 503–507, May 1998.

[3] J. Robinson and V. Kecman, “The use of support vectors in image com-
pression,”Proc. 2nd Int. Conf. Engineering Intelligent Systems, June
2000.

[4] H. Drucker, C. J. C. Burges, L. Kaufmann, A. Smola, and V. Vapnik,Sup-
port Vector Regression Machines. Cambridge, MA: MIT Press, 1997,
Advances in Neural Information Processing Systems, pp. 155–161.

[5] V. Vapnik, S. Golowich, and A. Smola,Support Vector Method for
Function Approximation, Regression Estimation and Signal Pro-
cessing. Cambridge, MA: MIT Press, 1997, vol. 9, Advances in
Neural Information Processing Systems.

[6] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[7] , Statistical Learning Theory. New York: Wiley, 1998.
[8] V. Kecman,Learning and Soft Computing: Support Vector Machines,

Neutral Networks and Fuzzy Logic Models. Cambridge, MA: MIT
Press, 2001.

958 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 4, JULY 2003

[9] J. Miano,Compressed Image File Formats. Reading, MA: Addison-
Wesley, 1999.

[10] “Digital Compression and Coding of Continuous-Tone Still Images,”
Amer. Nat. Standards Inst., ISE/IEC IS 10918-1, 1994.

[11] J. Jiang, “Image compression with neural networks—A survey,”Signal
Processing: Image Communication, vol. 14, 1999.

[12] W. B. Pennebaker and J. L. Mitchell,JPEG Still Image Data Compres-
sion Standard. New York: Van Nostrand Reinhold, 1993.

[13] C. Lawson and R. Hanson,Solving Least Square Prob-
lems. Englewood Cliffs, NJ: Prentice-Hall, 1974.

[14] V. Cherkassky and F. Mulier,Learning From Data: Concepts, Theory
and Methods. New York: Wiley, 1998.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

