
611

LEARNING IN ADAPTIVE BACKTHROUGH CONTROL STRUCTURE

VOJISLAV KECMAN
The University of Auckland, Department of Mechanical Engineering

Private Bag 92019, Auckland, New Zealand
E-mail: v.kecman@auckland.ac.nz

1 Introduction and Basic Control Structures

This paper focuses on the NN and FLM based adaptive control1. In particular, after presenting
the basic guiding ideas of NN based control approaches, we will introduce the Adaptive
Backthrough Control (ABC) scheme as one of the most serious candidate for the future con-
trol of the large class of nonlinear, partially known and time-varying systems [Kecman, 1997;
Kecman and Rommel, 1997; Rommel, 1997]. Recently, the area of NN control has been ex-
haustively investigated and there is a large number of different NN based control methods.
(Rigorous comparisons show that the NN based controllers perform far better than the well
established conventional options when the plant characteristics are poorly known [Bo^kovi`
and Narendra, 1995]). A systematic classification of the very different NN control structures
is a formidable task indeed [Agarwal, 1997]. Here, we will describe the approach based on
feed-forward networks having ‘static’ neurons. Such networks are very closely related with
the fuzzy models [Kecman and Pfeiffer, 1994].

So-called ‘standard’ or ‘classic’ NN based control is the one that uses two neural net-
works, Fig 1. This control structure comprises of NN2 that represents the (approximate) model
of the plant, and of NN1 that functions as a controller. The latter one represents (approximate,
again) inverse of NN2. Note that NN1 is an ‘inverse’ of the plant model and not of the plant.

1 In what follows NN will stand for neural, fuzzy, neuro-fuzzy or fuzzy-neuro models.

The paper presents new neural networks (NN) based Adaptive Backthrough Control (ABC)
scheme for both linear and nonlinear dynamic plants. Unlike other feedforward NN based control
schemes the ABC proposed here comprises of one neural network only which simultaneously acts
as both - plant model (emulator) and the controller (inverse of the emulator). For linear plants,
without noise, the resulting feedforward controller, providing that the order of the plant and plant
model are equal, is a perfect adaptive poles-zeros canceller. In the case of nonlinear dynamic
system, and for the monotonic nonlinearity, the proposed ABC control represents the nonlinear
predictive controller. The ABC scheme is based on the discrete nonlinear (NARMAX) dynamic
model. For such models and for monotonic nonlinearity, the calculation of the desired control
signal is the result of the nonlinear optimization procedure with guaranteed convex search func-
tion and consequently with a unique solution.

Kecman V., Learning in Adaptive Backthrough Control Structure , Proceedings of the IEEE Third International Conference on Algo-
rithms and Architectures for Parallel Processing ICA3PP -97), Melbourne, Australia pp. 611-624, World Scientific, Singapore, 1997

612

The structure given in Fig 1 is almost standard one in the field of ‘neurocontrol’. In this re-
spect, here proposed Adaptive Backthrough Control (ABC), is in the line with the basic results
and approaches from [Psaltis et al, 1988; Saerens and Soquet, 1991; Garcia and Morari, 1982;
Jordan, 1993; Hunt and Sbarbaro, 1991; Narendra and Parthasarathy, 1991 and Widrow and
Walach, 1996].

Figure 1 Neural Networks Based Adaptive Backthrough Control (ABC) Scheme

While being ‘similar’ in their graphical appearance, there are few important distinctive fea-
tures that differ ABC approach from all other standard NN based control methods.

The principal feature of ABC is that, unlike the other approaches, it doesn’t use stan-
dard training errors as the learning signals for adapting the controller (NN1) weights. Rather,
the true desired value yd (signal that should be tracked, reference signal) is used for the train-
ing of NN1. In this way, the desired but unknown control signal ud, results from the backward
transformation of the yd through NN2. The origin of the label for this approach as a back-
through method, lies in this backward step for the calculation of ud. In this way the ABC basi-
cally represents a younger (and it seems more direct and powerful) relative of the ‘distal
teacher’ idea from [Jordan, 1993] or of the [Saerens and Soquet, 1990], as well as of [Saerens,
Renders, and Bersini, 1996] approach. These three algorithms use the error signal e2 and its
sign respectively. Besides, they use the steepest descent for the optimization. In ABC, as long
as the control problem is linear in parameters (linear dependence of the cost function upon the
NN weights) the recursive least squares (RLS) learning algorithm is strictly used. Note that in
many cases for both NN and fuzzy logic model based controller this assumption about the
linear in parameters model is a realistic and acceptable one. Note, however, that the proposed
ABC algorithm doesn’t strictly depend upon the use of RLS technique and that the standard
gradient (EBP) or any other learning procedures can also be used.

Similarly to the adaptive inverse control (AIC) devised by Widrow, ABC control
scheme proposed here is effective as long as the plant is a stable one. It solves the problems

yd (or yref)

 y
Disturbance 1

‘Inverted’plant model

u
yd

Reference
model

NN1

Model of the plant

NN2

+

-

Plant

e2 = y - �y

Disturbance 2

ud

�y

613

of tracking and disturbance rejection for any stable plant. The same will be true in the case
of unstable plants as long as the unstable plant is stabilized by some classic control method
first. The control structure in Fig 1 has some of good characteristics of the idealized control
system design with a positive internal feedback that doesn’t require plant model NN2 to be
a perfect model of the plant [Tsypkin, 1972]. The later control scheme is structurally equal
to the internal model control (IMC) approach. The reference block presented in Fig 1 is not
required, unless some control of the control signal variable u is needed. All results below
are obtained by using Gref (s) = 1.

The structure (as well as a performance) of the NN based control system which com-
prises two NN is described in [Kecman, 1997; Kecman and Rommel, 1997; Rommel, 1997].
This structure is ‘inherited’ from the previously mentioned approaches and it is directly re-
lated to the classic EBP learning. The task of the network NN1 which acts as a controller is to
learn the inverse dynamics of the controlled plant. Being properly trained and after receiving
the desired plant output signal yd, NN1 should be able to produce the best control signal ud

which would drive the plant to output this desired yd. However, the ABC learning is different
from the EBP algorithm. Note that in the ABC algorithm the best control signal ud is calcu-
lated in each operating step and it is used for the adaptation of NN1’s weights in order that
this controller produces an output signal u, which should be equal or very close to the ud.
Thus, there is a great deal of a redundancy and it seems as though both the very structure of
the whole control system and the learning can be halved. Having the signal ud calculated, the
controller network NN1 is not needed any longer. The ABC structure with only one NN
which simultaneously acts as the plant model and as a controller (inverse plant model) is
shown below in Fig 2.

Figure 2 Neural or fuzzy network based Adaptive Backthrough Control (ABC) scheme with one network which si-
multaneously acts as the plant model and as a controller (inverse plant model).

The standard control task and the basic problem in controlling an unknown dynamic plant is
to find the proper, or desired, control (actuation) value ud as an input to the plant which should
ensure that,

Model of the plant
and its inverse

�y

Disturbance 2

Disturbance 1

y

yd

Reference
model

NN

yd (or yref)

-

Plant

e2 = y - �y

ud

Backthrough
calculation

614

y t y t td() (),= ∀ (1)

where the subscript d stands for desired. The variables y(t) and yd(t) denote the actual plant
output and desired (reference) plant output respectively. A controller that could produce this
value ud would be the best controller and the output of the plant would exactly follow the de-
sired input yd. In linear control, (51) will be ensured when,

G s G sci p() ()= −1 . (2)

Hence, the ideal controller transfer function Gci(s) should be the inverse of the plant transfer
function Gp(s). Because of many practical constraints, this is an idealized control structure
[Kecman, 1988]. However, we can try to get as close as possible to this ideal controller solu-
tion (Gci(s)). The ABC approach that is presented in this section, can achieve a great deal
(sometimes even nearly all) of this ideal controller. The block diagram of the ideal control of
any nonlinear system is given in Fig 3.

yd y
f -1(u, y) f(u, y)

ud

Figure 3 The ideal (feedforward) control structure for any plant.

f(u, y) represented in Fig 3 stands for any nonlinear mapping between an input u(t) and an
output y(t). In a general case of a dynamic system f(u, y) represents a system of nonlinear
differential equations. Here we will primarily be concerned with discrete-time systems, and
the model of the plant in the discrete-time domain will be in the form of nonlinear discrete
equation y(k+1) = f(u(k), y(k)). Now, the basic problem is how to learn, or obtain, the inverse
model of the unknown dynamic plant by using NN?

The wide application of NN in control is based on the universal approximation capacity
of neural networks and fuzzy models. Thus a learning (identification, adaptation, training) of
the plant and inverse plant dynamics represents both the basic mathematical tool and the basic
problem to be solved. Therefore the analysis presented below assumes a complete controlla-
bility and observability of the plant.

So far as the representation of dynamic system is concerned, we use a so-called NAR-
MAX model here. In the extensive literature on modeling dynamic plants, it was proved that
under some mild assumptions any nonlinear, discrete and time invariant system can always be
represented by the following NARMAX model,

y k f y k y k n u k u k m() { (), , (); (), , ()}+ = − −1 " " , (3)

where yk and uk are the input and output signals at instant k, and yk-i and uk-j (i = 1, ..., n and j =
1, ... ,m) represent the past values of these signals. Typically one can work with n = m. (3) is a

615

simplified deterministic version of the NARMAX model (there is no noise terms in it), and is
valid for dynamic systems with K outputs and L inputs. For K = L = 1 we obtain the so-called
SISO (single-input single-output) system which is studied here.

In reality, the nonlinear function f from (3) is very complex and generally unknown.
The whole idea in the application of NN is to try to approximate f by using some known and
simple functions which, in the case of the application of NN and FLM, are their activation and
membership functions respectively.

This identification phase of the mathematical model (3) can be given a graphical repre-
sentation (Fig 4). Note that two different identification schemes are presented in Fig 4 - series-
parallel and parallel. (The names are due [Landau, 1979]). The identification can be done by
using either of the two schemes,

y k f y k y k n u k u k n() { (), , (); (), , ()}+ = − −1 " " (4)

Series-Parallel
y k y k y k n u k u k n() { �(), , �(); (), , ()}+ = − −1 " " (5)

Parallel

()u k n−

or y(k)

�()y k

�()y k n−
�()y k −1

()u k

()u k − 1 ()�y k+1
NN

model

Plant
+

-

Disturbance

()y k+1

Series-ParallelParallel or

� ()y k

 z-1 z-1 z-1

 z-1 z-1

u(k)

It is hard to say which scheme is a better one. Narendra and Annaswamy (1989) showed (for
linear systems) the series-parallel method to be globally stable but similar results are not avail-
able for the parallel model yet. The parallel method has the advantage of avoiding noises ex-
isting in real plant output signals. On the other hand series-parallel scheme uses actual
(meaning correct) plant outputs and this generally enforces identification.
‘Historically’, seemingly the strongest stream of the NN based control strategies are the feed-
forward control schemes. There were a few relatively independent and partly dissimilar basic
directions in the search for a good control strategy. However, the leading idea was the same in
these, otherwise different, control schemes. The final goal was always the determination of a

Figure 4 Identification scheme using NN.

616

good inverse model of the plant dynamics f -1(u, y) as required in ideal feedforward control
structure in Fig 3.

This can be done by using many different and, more or less suitable, approaches. We
will only mention the three most popular ones as presented in [Psaltis et al, 1988]. In their
paper they introduced and discussed - a general, indirect and specialized learning architecture
for the NN based control of the stable nonlinear plants. (Independently, the same approach as
the general architecture was developed in [Jordan and Rumelhart, 1992] and it was named as a
direct inverse modeling. This is basically an off-line procedure and for nonlinear plants it will
usually precede the on-line phase. (If the plant is unstable a stabilization with a feedback loop
is necessary. That can be done with any standard control algorithm).

Detailed description of these approaches can be found in [Kecman, 1997]. Here we will
discuss only the specialized learning architecture as an introduction to the presentation of the
ABC scheme.

1.1 Specialized learning architecture

The specialized learning architecture is given in Fig 5 below.

 e3 = yd - y

 yd

 y yd u

+

-

NN Plant

Figure 5 Specialized learning architecture.

This structure operates in an on-line mode and it trains a neural network to act as a controller
in the region of interest (meaning that it is ‘a goal directed’). In this way this scheme avoids
some of drawbacks of the general and indirect structures. Here in the specialized learning ar-
chitecture, the controller no longer learns from its input-output relation, but from a direct
evaluation of the system’s performance error e3 = yd - y. The network is trained in order to
find the best control value u that drives the plant to an output y = yd. This is accomplished by
using a steepest decent (EBP) learning procedure. Despite the fact that the specialized archi-
tecture operates in an on-line mode, in the case of nonlinear plant, a pretraining or off-line
phase, will usually be both very useful and highly recommended here.

A critical point of the specialized learning architecture is that the EBP learning algo-
rithm requires knowledge of the Jacobian matrix of the plant. The emergence of the Jacobian

617

is obvious. The subjects of the learning are the weights of NN and, in order to correct the
weights in the right directions, learning algorithm should have information of the error caused
by wrong weights. But, there is no such direct information because the plant intervenes be-
tween the unknown NN outputs or control signals u, and the desired plant outputs y. The
‘teacher’ in the EBP algorithm is typically an error (here the performance error e3 = yd - y) and
this teacher is a distal one now [Jordan and Rumelhart, 1992].

Let us show the EBP algorithm for the general ‘distal teacher’ learning situation. In
order to apply the EBP algorithm, the NN and the plant are treated as a single neural network
in which the plant represents a fixed (unmodifiable) output layer. In this way the real OL of
NN becomes the hidden one. The whole EBP learning now concerns a calculation of proper
deltas, or error signals δ, associated with each neuron. In order to find these signals, the delta
signals δo for the true output layer (OL) neurons of NN should be determined first. For the
sake of simplicity we will show how this can be done for the SISO plant avoiding in this way
matrix notation. Having δo enables a relatively straightforward calculation of all other deltas
and specific weights changes.

Assume that NN is a network operating in parallel mode by having 2n inputs (where n
represents the model order), or that NN is given by model u k f yd k yd k n() { (), , ();+ = −1 "

u k u k n(), , ()}" − . There are ‘enough’ hidden layer (HL) neurons which can provide a good

approximation, and there is one linear OL neuron having the output u. The plant is given as y
= f(u, y). The EBP algorithm for learning the NN weights is a steepest descent procedure, and
the cost (error) function to be optimized is,

E =
1

2

1

2
2 2e y yd= −() = E(wij). (6)

Note that y = f(u, y) and u=(fn(un)), so that y = f[fn(un), y] where fn and un stand for the activa-
tion function of, and input signal to, the OL neuron respectively. (For a linear OL neuron, f
represents identity, u = un). In order to calculate the OL neuron’s error signal δo we apply
chain rule in calculation of the cost function’s gradient,

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

E

w

E

e

e

y

y

u

u

u

u

wi n

n

i

= =

()()
(,) 'y y

f u y

u
f

u

w
d

n

i
n

o

− −

−

1
∂

∂
∂
∂

δ
� 	�����
�����

 = -δo
∂
∂

u

w
n

i

(7)

The error signal of the OL neuron is denoted as δo f
n

' stands for the derivative of the OL neu-

ron activation function and here, for a linear neuron, f
n

' = 1. For the multilayer perceptron

network, where the input signal to the neuron is obtained as a scalar product un = wTx, the

618

derivative ∂ ∂u wn i/ = xi. (Note that in the RBF networks, this expression for the OL error

signal δo will be identical. There will be a difference in the expressions for the learning of the
HL neuron weights though).

It is important to realize that the derivative ∂ ∂f u y u(,) / represents the Jacobian of

the plant. Here, for SISO plant this is a scalar, or more precisely (1, 1) vector. Generally, a
plant dynamics and the Jacobian are unknown which is a serious shortcoming of this final
result that is otherwise ‘nice and handy’. There are two basic approaches to overcome this
difficulty which will be commented below.

Let us first give some final comments concerning the weights adaptation in the special-
ized learning architecture with the following assumptions: the Jacobian is known, the OL neu-
ron is linear and input to the neuron is calculated as a scalar product. With these assumptions
we can directly use the standard EBP algorithm. Having the error signal δo we can easily cal-
culate the HL deltas, as well as corresponding weight changes ∆wi = η δ xi. Hence, in this
backpropagation through the plant algorithm, the determination of the networks’ OL delta
signal is the most important step. In order to do that the Jacobian of the plant must be known.

Generally this is not the case, and two alternative approaches on how to handle the ig-
norance of the plant Jacobian are: the approximation of the plant Jacobian by its sign and the
distal teacher approach. The first approach is presented in [Saerens and Soquet, 1991)] and
the second one in [Jordan and Rumelhart, 1992].2 This second, or distal teacher approach,
differs significantly in using the Jacobian of the plant forward model instead of the real
plant’s Jacobian, or instead of the signs of the Jacobian derivatives of the real plants. The
whole feedforward control system now comprises the two neural networks. One is a model of
the plant and the second NN, which will be trained with the help of the first one, acts as a
controller. This structure is practically same as the one of the ABC as given in Fig 1. (The
structures only are the same but the learning is different).

2 Learning in the ABC Structures Which Comprises One NN Only

Fig 2 shows the ABC scheme having one NN which acts as both the plant model (emulator)
and the controller of the plant. It is closely related with Fig 5 with a difference that in the ABC
structure the desired control signal ud, and not the error signal δ is calculated. This calculation
is done in an on-line mode. In the case that the plant is nonlinear the standard approach is that
this on-line part is preceded by the off-line learning of the plant model. The advantage is that
the off-line learning will produce a better set of initial weights for the on-line operation. In the

2 Similar approaches and structures have been proposed and used in many papers from Widrow and his

coworkers under the global name of the adaptive inverse control.

619

case of nonlinear plants pretraining of NN is essential. In the case of the linear plant this pre-
training is not that important.

Sometimes it may be useful to introduce a reference model, too. This step is not crucial
for the ABC approach but an important result could be that with a reference model a tuning of
the control effort is possible. This might be necessary for many real existing systems because
the actuators usually operate only within a specific range, and leaving this range is either not
possible or can harm the system’s performance.

The basic idea of the ABC is to design a plant emulator which simultaneously acts as
the inverse of the plant (or, as an adaptive controller). In this way, the problem of finding the
‘best’ control signal ud will be solved. In general, this value ud is not available. By using the
ABC approach we can find this desired control values ud that will usually be very close to the
ideal ones.

During the operation of the whole system (meaning, during the adaptation or learning of
both the plant model and controller parameters) there are several error signals that may be
used for the adjustment of these parameters. Similarly to [Jordan and Rumelhart, 1992] we
define the following errors in Table 1. (If the reference model is used the value yd should be
replaced with the output value of the reference model yref).

Table 1 Definition of the errors

Other methods [Psaltis et al, 1988; Widrow and Walach, 1996; Widrow and Plett, 1996;
Saerens and Soquet, 1989 and Jordan and Rumelhart, 1992] use different approaches in order
to find the error signal term that can be used to train the controller (see [Kecman, 1997]). The
ABC structure originated from these previous approaches with a few basic and important dif-
ferences. First, the estimate of the desired control signal ud can be calculated, and an error
(delta) signal as in 'distal teacher' approach is not needed. For the ABC of linear systems, the
calculation of ud is straightforward. The forward model (NN in Fig 2) is given as,

�() , ,y k w xi i
i

N
T+ = ⋅ = ⋅

=
∑1 2 2

1
2 2w x (8)

where N = 2n, n is the order of the model and x2 is an input vector to NN2 comprised of pres-
ent and previous values of u and y. For the calculation of the desired value �ud this equation

should and can be rearranged in respect to the input of the neural network NN2,

e u ud1 = −� � controller error

e y y2 = − � prediction error

e y y
d3 = − performance error

e y yd4 = − � predicted performance error

620

() () () () () ()
�

, , � , , �, , , ,

,

u k
y k w y k w y k n w u k w u k n

w
d

d d n d n n

n

=
+ − − − − + − − − − − ++

+











1 1 1 1 12 2 2 2 2 2

2 1

" "
(9)

Therefore, when applied to the control of linear systems, the calculation of the control signal
ud by using (9) is similar to the predictive (deadbeat) controller approach. Note that in the cal-

culation of the best estimates of desired control signal �ud (k) to the plant and to the NN, the

desired output values of the system () () ()y k y k y k nd d d+ −1 , , , " are used. It is interesting to

note that instead of using the present and previous desired values, one can use the present and
previous actual plant outputs () ()y k y k n, ," − . It seems as though this second choice of the

variables is a better one.
In the case of the nonlinear system control, the calculation of the desired control signal

ud which corresponds to the desired output from the plant yd , is much more involved task. For
the monotonic nonlinearities (i.e., for the one-to-one-mapping of the plant inputs u into its
outputs y) control signal ud can be calculated by an iterative algorithm that guarantees finding
of proper ud for any desired yd. Two other alternative approaches to the calculation of the de-
sired ud which deserve more investigations are given in [Rommel, 1997]. This is the crucial
result in the proposed ABC algorithm.

2.1 Iterative calculation of ud with steepest descent (gradient method) for nonlinear plants

Given yd , the desired value ud can be calculated by using a standard (iterative) steepest de-
scent method, which basically represents a gradient search algorithm. Note that the NN in Fig
2 is a NARMAX model as given in (4) or (5). We rewrite the series-parallel model equation
below,

y k f y k y k n u k u k n() { (), , (); (), , ()}+ = − −1 " " . (10)

If the function f of the identified plant model is a monotone increasing or decreasing one, than
this NARMAX model represents an one-to-one mapping of the desired control signal ud (and
corresponding previous values of u and y) into the desired yd.

Now, the basic idea of the adaptive backthrough calculation of ud for any given yd is the
same as in linear case. But unlike in linear case above, where the solution is given by (9), in
the case of general nonlinear model which is represented by NN in Fig 2, it is not possible to
express ud explicitly any longer. Therefore, the solution should be obtained by some numeri-
cal iterative procedure. Here, we propose the use of the standard gradient algorithm.

Proposition: In case of monotonic nonlinearity, it is always possible to find the desired
control signal ud to any desired degree of accuracy, by using sufficiently small optimization
step of the gradient optimization method.

621

Proof: A proof follows from the standard properties of the gradient optimization algo-
rithms. Having a NN as a NARMAX model (10), we define the function,

e(k) = y(k+1) - f = 0, (11)

and problem to solve is to find ud(k) for known yd(k+1). Note that all past values of y and u
which appear in f are known, and the problem to solve is to find the root ud(k) of (11). This
one-dimensional search problem will be solved by finding the minimum of the function,

E = e(k)2. (12)

Thus, we transformed the problem of finding the root of the nonlinear equation (11) into the
minimization problem of the equation (12). In this specific case of a monotonic mapping f, the
‘hypersurface’ E is a convex function having a known minimum E(ud) = 0. For a given
yd(k+1) and known past values of y and u, the root ud represents the mapping f -1 of the known
point from a 2n-dimensional space into one-dimensional space (ℜ 2n → ℜ). For a monotonic
nonlinear mapping f y k y k n u k u k n{ (), , (); (), , ()}" "− − , the solution ud is unique and it can

be obtained by any one-dimensional search technique. (The solution in the case of a non-
monotonic functions is slightly more involved, it requires additional conditions (constraints)
and it is the subject of current research).

Fig 6 demonstrates the geometry of the procedure for the simplest case of NN repre-
senting a (ℜ → ℜ) mapping and having two neurons with Gaussian AF only.

0 2 4 6 8 10 12 14 16
0

2

4

6

8
Minimized function = e2

0 2 6 8 10 12 16
0

2

4

6
Approximated (solid) and 2 approximating

functions (dashed)

minimum

starting position

solution
yd

ud

y0

u0

0 2 4 6 8 10 12 14 16
0

1

2

3
Minimized function = e2

0 2 4 6 ud 12 14 16
0

1

2

3

4
Approximated (solid) and 2 approximating

functions (dashed)

starting position

solution
obtained2nd solutionyd

u0

y0

minima corresponding
to the two solutions

Figure 6 Iterative calculation of ud with gradient method. Monotonic NL function (left) and a non-monotonic NL
function (right)

Left graphs show a convex function E = e2 (above) for a monotonic nonlinear function f (be-
low), while the right graphs show the solutions for the non-monotonic nonlinear mapping f.
The mathematics in the case of nonlinear dynamic systems is much more involved and with-
out a great hope for graphical presentation of the corresponding optimization procedure. In the
case of the lowest (or first) order dynamic system the graphical representation is possible but

622

hard to follow. The details of the numerical part of the backthrough calculation of ud can be
found in [Kecman, 1997].

3 Simulational results

Nonlinear 1st order dynamic plant adapted from [Narendra and Parthasarathy, 1991] should
be controlled by the ABC scheme comprised of the one network only. The plant equation is
given below,

y k
y k

y k
u k()

()

()
()= −

+ −
+ −1

1 1
1

2
3 .

The neural network that simultaneously acts as a plant model and as its controller is com-
prised of 39 neurons in hidden layer. Basis functions in all HL neurons are the two-
dimensional Gaussians with the same covariance matrix Σ = diag(0.2750, 0.0833), and
with positions determined by an orthogonal least squares selection procedure (Orr, 1996).
NN was pretrained by using 1000 data pairs. Training input signal was a uniformly distrib-
uted random signal. (Note that the ABC control structure is much simpler than the one in
(Narendra and Parthasarathy, 1991). They used two NN for the identification and one as a
controller. Each network had 200 neurons. Besides, in the off-line training phase they used
25 000 training pairs).
After the training was done, a number of simulation runs had proved very good performance
of the ABC scheme while controlling time invariant nonlinear system. Fig 7 (left) shows the
plant response while tracking input yd = sin(2πk / 25) + sin(2πk / 10). The plant response is
indistinguishable from the desired trajectory. The tracking is perfect.
Much more complex task is to control the time variant nonlinear plant. There is no general
theory, approach or method in adaptive control of nonlinear time variant plants. These are
the toughest control problems anyway. Here, we only present initial results on how the
ABC scheme cope with such plants. We do not pretend to answer any open question in this
field, but rather we try to put a little light on its performance. Fig 7 (right) shows the error
when the pretrained but fixed NN tried to control fast changing plant given below,

y k
y k

y k
k u k()

()

()
. ()= −

+ −
+ − ∗ −1

1 1
1 0 001 1

2
3() .

623

0 20 40 60 80 100
-4

-3

-2

-1

0

1

2

3

4
Performance of the ABC scheme. No on-line learning.

Tracking error
e3 = yd - y

 y ~ yd

0 100 200 300 400 500

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2 Performance error e3 = yd - y for time
variant plant and fixed controller

Figure 7 ABC: Perfect tracking in the case of nonlinear monotonic time invariant plant (left). Performance error for
fixed pretrained NN controlling the time variant plant (right). (The plant gain is halved in 500 steps).

0 100 200 300 400 500
-20

-15

-10

-5

0

5

10
 Performance error e3 = yd - y for time
variant plant and adapting controller

100 200 300 400 500

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
 Performance error e3 = yd - y for time
variant plant and adapting controller

Figure 8 ABC: Performance error at controlling the time variant plant with an on-line adaptation of the NN OL
weights. Forgetting factor λ=0.985. (Right graph is drawn in the same scale as Fig 7 right).

This is a model of the plant which halves the plant gain in 500 steps. Without an adaptation
the performance error e3 = yd - y increases rapidly (Fig 7, right). Fig 8 shows e3 in the case of
the on-line adaptation of neural network. Results are obtained by using a forgetting factor λ =
0.985. The adaptation and control process is a stable one and, in comparison to the error in Fig
7, the final error in Fig 8 is three times smaller.

4 Conclusions

This paper presented the neural network and fuzzy logic model based control of nonlinear
dynamic plants. In particular it was shown that the neural network based adaptive back-
through control (ABC) scheme can be successfully applied for control of both linear and non-
linear dynamic plants. The principal idea of the ABC, the use of controller error signal e1
instead of an error back propagated delta signal for the learning of the controller, is intro-
duced. Due to this fact the ABC performance seems to be superior to the other NN based
adaptive control approaches. For linear plants, the resulting feedforward controller, providing
that the order of the plant and plant model are equal, is a perfect adaptive poles-zeros cancel-

624

ler. Thus, the ABC has a character of a predictive controller. Faced with nonlinear plants the
ABC performs as a kind of nonlinear deadbeat controller. We introduced the idea of using
only one NN, which should simultaneously act as both the plant model and the model of the
plant inverse. In this way we avoided a great deal of a redundancy while training two net-
works.

References

Garcia, C. E. and M. Morari, 1982. IEC Proc. Des. Dev. 21, 308
Hunt, K.J. and D. Sbarbaro, 1991. IEE Proc.-D, Vol. 138, No. 5, 431-438
Jordan M.I. and Rumelhart D. E., 1992. Journal of Cognitive Science 16, 307-354
Jordan M.I., 1993. Course 9.641, MIT, Cambridge, MA
Kecman, V., 1988. Foundations of Automatic Control, (In Serbocroat), Skolska knjiga, Zagreb
Kecman, V. and B.-M., Pfeiffer, 1994. EUFIT ’94, Proc., Vol. 1, pp. 58-66, Aachen
Kecman, V., 1997. Report 575, The University of Auckland, NZ
Kecman, V. and T. Rommel, 1997 EUFIT ’97, Proc., Aachen
Narendra, K.S., and K. Parthasarathy, 1991. IEEE Transactions on Neural Networks 1, 4-27.
Psaltis, D., A. Sideris. and A. A. Yamamura, 1988. IEEE Control System Mag., 8, pp. 17-21
Rommel, T., 1997. Report No. 97-30 The University of Auckland, NZ
Saerens, M and A. Soquet, 1991. IEE Proc.-F, 138 (1), pp. 55-62
Saerens, M., Renders, J.-M., H. Bersini, 1996. Chap. 7, In IEEE Press Book on Intelligent Control

Systems, Gupta M. and N. Sinha (eds.), IEEE Computer Society Press
Tsypkin, Ja. Z, 1972. Fundamentals of Automatic Control Theory, (In Russian), Nauka, Moskva
Widrow, B. and E., Walach, 1996. Adaptive Inverse Control, Upper Saddle River, Prentice Hall
Widrow B. and G.L. Plett, 1996. Proc. of NICROSP '96, Intl. Workshop on NN for Identif., Control,
Robot., and Sign./Image Process., Venice, Italy, IEEE 1996 0-8186-7456-3/9

