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Summary. This chapter describes an active-set algorithm for the solution of
quadratic programming problems in the context of Support Vector Machines (SVMs).
Most of the common SVM optimizers implement working-set algorithms like the
SMO method because of their ability to handle large data sets. Although they show
generally good results, they may perform weakly in some situations, e.g., if the
problem is ill-posed or if high precision is needed. In these cases, active-set tech-
niques (which are robust general-purpose QP solvers) are a reasonable alternative.
Algorithms are derived for classification and regression problems for both fixed and
variable bias term. The approximation of the solution is considered as well as the
comparison with other optimization methods.
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1 Introduction

In the recent years, Support Vector Machines (SVMs) have become popular
for classification and regression tasks [10, 11] since they can treat large input
dimensions and show a good generalization behavior. The method has its
foundation in classification and has later been extended to regression. SVMs
are computed by solving Quadratic Programming (QP) problems (see (9),
(17), (28) and (36)), the sizes of which depends on the number N of training
data.

1.1 Optimization methods

This dependency on N is the most critical point of SVM optimization since
N may be very large and the memory consumption is roughly O(N2) if the
whole QP problem needs to be stored in memory. For that, the choice of an
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optimization method has to consider mainly the problem size and the memory
consumption of the algorithm, see Fig. 1. If the problem is small enough to
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Fig. 1. QP optimization methods for different training data set sizes

be stored completely in memory, interior point methods (having a memory
consumption of O(N2)) are suitable, since they are known to be the most
precise QP solvers [7, 10]. For very large data sets on the other hand, there
is currently no alternative to working-set methods (decomposition methods)
like SMO [8], ISDA [4] or similar strategies [1]. This class of methods has
basically a memory consumption of O(N) and can therefore cope even with
large scale problems. Active-set algorithms are appropriate for medium-size
problems because they need O(N2

f ) memory where Nf is the number of free
support vectors that is typically only a small fraction of the data set.

Common SVM software packages rely on working-set methods because N
is often large in practical applications. However, these methods may show
weak results if the problem is ill-posed, if the SVM parameters (C and ε) are
not chosen carefully, or if high precision is needed. This is in particular true
for regression, see Sec. 5. Active-set algorithms are the classical solvers for
QP problems. They are known to be robust, but they are often slower and
(as stated above) require more memory than working-set algorithms. Only
few attempts have been made to utilize this technique for SVMs. E.g., in [5]
it is applied to a modified SVM classification problem. Also the Chunking
algorithm [11] is closely related.

1.2 Active-set algorithms

The basic idea is to find the active set A, i.e., those inequality constraints that
are fulfilled with equality. If A is known, the Karush-Kuhn-Tucker (KKT)
conditions reduce to a simple system of linear equations which yields the
solution of the QP problem [7]. Because A is unknown in the beginning, it is
constructed iteratively by adding and removing constraints and testing if the
solution remains feasible.

The construction of A starts with an initial active set A0 containing the
indices of the bounded variables (lying on the boundary of the feasible region)
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whereas those in F0 = {1, . . . , N}\A0 are free (lying in the interior of the
feasible region). Then the following steps are performed repeatedly for k =
1, 2, . . .:

A1.Solve the KKT system for all variables in Fk.
A2.If the solution is feasible, find the variable in Ak that violates the KKT

conditions most, move it to Fk, then go to A1.
A3.Otherwise find an intermediate value between old and new solution lying

on the border of the feasible region, move one bounded variable from Fk

to Ak, then go to A1.

The intermediate solution in step A3 is computed as ak = ηāk−(1−η)ak−1

with maximal η ∈ [0, 1] (affine scaling), where āk is the solution of the linear
system in step A1, i.e., the new iterate ak lies on the connecting line of ak−1

and āk, see Fig. 2. The optimum is found if during step A2 no violating
variable is left in Ak.

-
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Fig. 2. Affine scaling of the non-feasible solution

This basic algorithm is used for all cases described in the next sections,
only the structures of the KKT system in step A1 and the conditions in
step A2 are different. Sec. 2 and 3 describe how to use the algorithm for
both classification and regression tasks. In this context we also repeat the
derivations of the dual problems in order to introduce the distinction between
fixed and variable bias term. In Sec. 4, the efficient solution of the KKT system
and the approximation of the solution are explained. Application examples for
both classification and regression are given in Sec. 5.

2 Support Vector Machine Classification

A two-class classification problem is given by the data set {(xi, yi)}
N
i=1 with

the class labels yi ∈ {−1, 1}. Linear classifiers aim to find a decision function
f(x) = wTx + b so that f(xi) > 0 for yi = 1 and f(xi) < 0 for yi = −1. The
decision boundary is the intersection of f(x) and the input space, see Fig. 3.

For separable classes, an SVM classifier computes a decision function hav-
ing a maximal margin m with respect to the two classes, so that all data lie
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outside the margin, i.e., yif(xi) ≥ 1. Since w is the normal vector of the sepa-
rating hyperplane, the margin can be expressed as m = 2/wTw. In the case of
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Fig. 3. Separating two overlapping classes with a linear decision function

non-separable classes, slack variables ξi are introduced measuring the distance
to the data lying on the wrong side of the margin. They do not only make the
constraints feasible but also occur in the loss function to be minimized [11].
These ideas lead to the soft margin classifier:

min
w,ξ

Jp(w, ξ) =
1

2
wTw + C

N∑

i=1

ξi (1a)

s.t. yi(w
Txi + b) ≥ 1− ξi (1b)

ξi ≥ 0, i = 1, . . . , N. (1c)

The parameter C describes the trade-off between maximal margin and correct
classification. The primal problem (1) is now transformed into its dual one by
introducing the Lagrange multipliers α and β of the 2N primal constraints.
The Lagrangian is given by

Lp(w, ξ, b,α,β) =
1

2
wTw+C

N∑

i=1

ξi−
N∑

i=1

αi

[

yi(w
Txi+b)−1+ξi

]

−
N∑

i=1

βiξi (2)

having a minimum with respect to the primal variables w, ξ and b, and a
maximum with respect to the dual variables α and β (saddle point condition).
According to the KKT condition (47a) the minimization is performed with
respect to the primal variables in order to find the saddle point:

∂Lp

∂w
= 0 ⇒ w =

N∑

i=1

yiαixi (3a)

∂Lp

∂ξi

= 0 ⇒ αi + βi = C, i = 1, . . . , N (3b)



Active-Set Methods for Support Vector Machines 5

Although b is also a primal variable, we defer the minimization with respect
to b for a moment. Instead, (3) is used to eliminate w, ξ and β from the
Lagrangian which leads to

L∗
p(α, b) = −

1

2

N∑

i=1

N∑

j=1

yiyjαiαjx
T
i xj +

N∑

i=1

αi − b
N∑

i=1

yiαi . (4)

To solve nonlinear classification problems, the SVM is applied to features
Φ(x) (instead of the inputs x), where Φ is a given feature map. Since x

occurs in (4) only in scalar products xT
i xj , we define the kernel function

K(x,x′) = ΦT(x)Φ(x′) , (5)

and finally (4) becomes

L∗
p(α, b) = −

1

2

N∑

i=1

N∑

j=1

yiyjαiαjKij +
N∑

i=1

αi − b
N∑

i=1

yiαi (6)

with the abbreviation Kij = K(xi,xj). We assume kernels always to be sym-
metric and positive definite. This class of functions includes nearly all common
kernels, like linear kernels, polynomials and Gaussians [10]. The conditions
(47d) and (3b) yield additional restrictions for the dual variables

0 ≤ αi ≤ C for i = 1, . . . , N (7)

From (3a) and (5) we conclude that

f(x) = wTΦ(x) + b =
∑

αi 6=0

yiαiK(xi,x) + b . (8)

This shows once more the strengths of the kernel concept: SVMs can easily
handle extremely large feature spaces since the primal variables w and the
feature map Φ are needed neither for the optimization nor in the decision
function. Vectors xi with αi 6= 0 are called support vectors. Usually only a
small fraction of the data set are support vectors, typically about 5%.

From the algorithmic point of view, an important decision has to be made
at this stage: weather the bias term b is treated as a variable or it is kept
fixed during optimization. The next two sections derive active-set algorithms
for both cases.

2.1 Classification with fixed bias term

We first consider the bias term b to be fixed, including the most important case
b = 0. This is possible if the kernel function provides an implicit bias which is
true e.g. for positive definite kernel functions [4, 9, 12]. The only effect is that
slightly more support vectors are computed. The main advantage of a fixed
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bias term is a simpler algorithm since no additional equality constraint needs
to be imposed during optimization (like in (17)):

min
α

Jd(α) =
1

2

N∑

i=1

N∑

j=1

yiyjαiαjKij −
N∑

i=1

αi + b
N∑

i=1

yiαi (9a)

s.t. 0 ≤ αi ≤ C , i = 1, . . . , N (9b)

Note that Jd(α) equals −L∗
p(α, b) with a given b. For b = 0 (the “no-bias

SVM”) the last term of the objective function (9a) vanishes.
If b is kept fixed, the SVM is computed by solving the box-constrained

convex QP problem (9), which is one of the most simple QP cases. To solve
it with the active-set method described in Sec. 1, the KKT conditions of this
problem must be found. Its Lagrangian is

Ld(α,λ,µ) =
1

2

N∑

i=1

N∑

j=1

yiyjαiαjKij −
N∑

i=1

αi + b
N∑

i=1

yiαi

−
N∑

i=1

λiαi −
N∑

i=1

µi(C − αi)

(10)

where λi and µi are the Lagrange multipliers of the constraints αi ≥ 0 and
αi ≤ C, respectively. Introducing the prediction errors Ei = f(xi) − yi, the
KKT conditions can be derived for i = 1, . . . , N (see App. A):

∂Ld

∂αi

= yiEi − λi + µi = 0 (11a)

0 ≤ αi ≤ C (11b)

λi ≥ 0, µi ≥ 0 (11c)

αiλi = 0, (C − αi)µi = 0 (11d)

According to αi, three cases have to be considered:

0 < αi < C (i ∈ F) ⇒ λi = µi = 0

⇒
∑

j∈F

yjαjKij = yi −
∑

j∈AC

yjαjKij − b
(12a)

αi = 0 (i ∈ A0) ⇒ λi = yiEi > 0

⇒ µi = 0
(12b)

αi = C (i ∈ AC) ⇒ λi = 0

⇒ µi = −yiEi > 0
(12c)

The above conditions are exploited in each iteration step k. Case (12a) es-
tablishes the linear system in step A1 for the currently free variables i ∈ Fk.
Cases (12b) and (12c) are the conditions that must be fulfilled for the vari-
ables in Ak = Ak

0 ∪A
k
C in the optimum, i.e., step A2 of the algorithm searches
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for the worst violator among these variables. Note that Ak
0 ∩A

k
C = ∅ because

αi = 0 and αi = C cannot be true simultaneously. The variables in Ak
C are

the bounded support vectors and also occur in the linear system of case (12a).
The implementation uses the coefficients ai = yiαi instead of the Lagrange

multipliers αi. This is done to keep the same formulation for the regression
algorithm in Sec. 3, and because it is slightly faster in computation. With this
modification, in step A1 the linear system

Hkak = ck (13)

with
ak

i = yiα
k
i

hk
ij = Kij

ck
i = yi −

∑

j∈Ak

C

ak
j Kij − b







for i, j ∈ Fk (14)

has to be solved. If Fk contains p free variables, then Hk is a p×p matrix. It is
positive definite since positive definite kernels are assumed for all algorithms.
For that (13) can be solved by the methods described in Sec. 4. Step A2
computes

λk
i = +yiE

k
i for i ∈ Ak

0 (15a)

µk
i = −yiE

k
i for i ∈ Ak

C (15b)

and checks if they are positive, i.e. if the KKT conditions are valid for i ∈
Ak = Ak

0 ∪ A
k
C . Among the negative multipliers, the most negative one is

selected and moved to Fk.

2.2 Classification with variable bias term

Most implementations do not keep the bias term fixed but compute it during
optimization. In that case b is a primal variable, and the Lagrangian (2) can
be minimized with respect to it:

∂Lp

∂b
= 0 ⇒

N∑

i=1

yiαi = 0 (16)

On the one hand (16) removes the last term from (4), on the other hand it is
an additional constraint that must be considered in the optimization problem:

min
α

Jd(α) =
1

2

N∑

i=1

N∑

j=1

yiyjαiαjKij −
N∑

i=1

αi (17a)

s.t. 0 ≤ αi ≤ C , i = 1, . . . , N (17b)

N∑

i=1

yiαi = 0 (17c)
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This modification changes the Lagrangian (10) to

Ld(α,λ,µ, ν) =
1

2

N∑

i=1

N∑

j=1

yiyjαiαjKij −
N∑

i=1

αi

−
N∑

i=1

λiαi −
N∑

i=1

µi(C − αi)− ν
N∑

i=1

yiαi

(18)

and its derivatives to

∂Ld

∂αi

= yi

N∑

j=1

yjαjKij − 1− λi + µi − νyi = 0 , i = 1, . . . , N (19)

where ν is the Lagrange multiplier of the equality constraint (17c). It can
be easily seen that ν = −b, i.e., Ld is the same as (10) with the important
difference that b is not fixed any more. With this and again with ai = yiαi

the linear system becomes
(

Hk e

eT 0

) (
ak

bk

)

=

(
ck

dk

)
} p rows
} 1 row

(20)

with
dk = −

∑

j∈Ak

C

ak
j and e = (1, . . . , 1)T (21)

One possibility to solve this indefinite system is to use factorization methods
for indefinite matrices, e.g., the Bunch-Parlett decomposition [3]. But since
we retain the assumption that K(xi,xj) is positive definite, the Cholesky

decomposition H = RTR is available (see Sec. 4), and the system (20) can
be solved by exploiting its block structure. For that, a Gauss transform is
applied to the blocks of the matrix, i.e., the first block row is multiplied by
(uk)T := eT(Hk)−1. Subtracting the second row yields

(uk)Tebk = (uk)Tck − dk (22)

Since this is a scalar equation, it can be simply divided by (uk)Te in order
to find bk. This technique is very effective here because only one additional
row/column has been appended to Hk. The complete solution of the block
system is done by the following procedure:

• Solve (Rk)TRkuk = e for uk.

• bk = −
(

∑

j∈Ak

C

ak
j +

∑

j∈Ak

C

uk
j ck

j

)/
∑

j∈Ak

C

uk
j

• Solve (Rk)TRkak = ck − ebk for ak.

The computation of λk
i and µk

i remains the same as in (15) for fixed bias term.
An additional topic has to be considered here: For a variable bias term,

the Linear Independence Constraint Qualification (LICQ) [7] is violated when
for each αi one inequality constraint is active, e.g., when the algorithm is
initialized with αi = 0 for i = 1, . . . , N . The algorithm uses Bland’s rule to
avoid cycling in these cases.
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3 Support Vector Machine Regression

Like in classification, we start from the linear problem. The goal is to fit a
linear function f(x) = wTx + b to a given data set {(xi, yi)}

N
i=1. Whereas

most other learning methods minimize the sum of squared errors, SVMs try
to find a maximal flat function, so that all data lie within an insensitivity
zone of size ε around the function. Outliers are treated by two sets of slack
variables ξi and ξ∗i measuring the distance above and below the insensitivity
zone, respectively, see Fig. 4 (for a nonlinear example) and [10]. This concept
results in the following primal problem:

min
w,ξ,ξ∗

Jp(w, ξ, ξ∗) =
1

2
wTw + C

N∑

i=1

(ξi + ξ∗i ) (23a)

s.t. yi −wTxi − b ≤ ε + ξi (23b)

wTxi + b− yi ≤ ε + ξ∗i (23c)

ξi, ξ
∗
i ≥ 0, i = 1, . . . , N. (23d)

To apply the same technique as for classification, the Lagrangian

Lp(w, b, ξ, ξ∗,α,α∗,β,β∗) =

1

2
wTw + C

N∑

i=1

(ξi + ξ∗i )−
N∑

i=1

(βiξi + β∗
i ξ∗i )

−
N∑

i=1

αi(ε + ξi + yi −wTxi − b)−
N∑

i=1

α∗
i (ε + ξ∗i − yi + wTxi + b)

(24)

of the primal problem (23) is needed. α, α∗, β and β∗ are the dual variables,
i.e., the Lagrange multipliers of the primal constraints. As in Sec. 2, the saddle
point condition can be exploited to minimize Lp with respect to the primal
variables w, ξ and ξ∗, which results in a function that only contains α, α∗

and b:

L∗
p(α,α∗, b) =

1

2

N∑

i=1

N∑

j=1

(αi − α∗
i )(αj − α∗

j )Kij

−
N∑

i=1

(αi − α∗
i )yi + ε

N∑

i=1

(αi + α∗
i ) + b

N∑

i=1

(αi − α∗
i )

(25)

The scalar product xT
i xj has already been substituted by the kernel function

Kij = K(xi,xj) to introduce nonlinearity to the SVM, see (5) and Fig. 4.
The bias term b is untouched so far because the next sections offer again two
possibilities (fixed and variable b) that lead to different algorithms. In both
cases, the inequality constraints

0 ≤ α
(∗)
i ≤ C , i = 1, . . . , N (26)

resulting from (47d) must be fulfilled. Since a data sample cannot lie above
and below the insensitivity zone simultaneously, the dual variables α and α∗
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Fig. 4. Nonlinear support vector machine regression

are not independent. At least one of the primal constraints (23b) and (23c)
must be fulfilled with equality for each i, i.e., the KKT conditions imply that
αiα

∗
i = 0. The output of regression SVMs is computed as

f(x) =
∑

α
(∗)
i

6=0

(αi − α∗
i )K(xi,x) + b (27)

In the following, the notation α
(∗)
i is used as an abbreviation if an (in-) equality

is valid for both αi and α∗
i .

3.1 Regression with fixed bias term

The kernel function is still assumed to be positive definite so that b can be kept
fixed or even omitted. The QP problem (9) is similar for regression SVMs. It
is built from (25) and (26) by treating the bias term as a fixed parameter:

min
α, α∗

Jd(α,α∗) =
1

2

N∑

i=1

N∑

j=1

(αi − α∗
i )(αj − α∗

j )Kij −
N∑

i=1

(αi − α∗
i )yi

+ ε
N∑

i=1

(αi + α∗
i ) + b

N∑

i=1

(αi − α∗
i )

(28a)

s.t. 0 ≤ α
(∗)
i ≤ C , i = 1, . . . , N (28b)

Since optimization methods usually assume minimization problems rather
than maximization problems, we set Jd(α,α∗) = −L∗

p(α,α∗, b) with fixed b.
For b = 0 the last term vanishes so that (28) differs from the standard problem
(36) only in the absence of the equality constraint (36c). To find the steps A1
and A2 of an active-set algorithm that solves (28) its Lagrangian
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Ld(α,α∗,λ,λ∗,µ,µ∗) =

1

2

N∑

i=1

N∑

j=1

(αi − α∗
i )(αj − α∗

j )Kij

−
N∑

i=1

(αi − α∗
i )yi + ε

N∑

i=1

(αi + α∗
i ) + b

N∑

i=1

(αi − α∗
i )

−
N∑

i=1

λiαi −
N∑

i=1

µi(C − αi)−
N∑

i=1

λ∗
i α

∗
i −

N∑

i=1

µ∗
i (C − α∗

i )

(29)

is required. Compared to classification, two additional sets of multipliers λ∗
i

(for α∗
i ≥ 0) and µ∗

i (for α∗
i ≤ C) are needed here. Using the prediction errors

Ei = f(xi)− yi, the KKT conditions for i = 1, . . . , N are

∂Ld

∂αi

= ε + Ei − λi + µi = 0 (30a)

∂Ld

∂α∗
i

= ε− Ei − λ∗
i + µ∗

i = 0 (30b)

0 ≤ α
(∗)
i ≤ C (30c)

λ
(∗)
i ≥ 0, µ

(∗)
i ≥ 0 (30d)

α
(∗)
i λ

(∗)
i = 0, (C − α

(∗)
i )µ

(∗)
i = 0 (30e)

According to αi and α∗
i , five cases have to be considered:

0 < αi < C, α∗
i = 0 (i ∈ F)

⇒ λi = µi = µ∗
i = 0, λ∗

i = 2ε > 0

⇒
∑

j∈F(∗)

ajKij = yi − ε−
∑

j∈A
(∗)
C

ajKij
(31a)

0 < α∗
i < C, αi = 0 (i ∈ F∗)

⇒ λ∗
i = µi = µ∗

i = 0, λi = 2ε > 0

⇒
∑

j∈F(∗)

ajKij = yi + ε−
∑

j∈A
(∗)
C

ajKij
(31b)

αi = α∗
i = 0 (i ∈ A0 ∩ A

∗
0)

⇒ λi = ε + Ei > 0, λ∗
i = ε− Ei > 0

⇒ µi = 0, µ∗
i = 0

(31c)

αi = C, α∗
i = 0 (i ∈ AC)

⇒ λi = 0, λ∗
i = ε− Ei > 0

⇒ µi = −ε− Ei > 0, µ∗
i = 0

(31d)
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αi = 0, α∗
i = C (i ∈ A∗

C)

⇒ λi = ε + Ei > 0, λ∗
i = 0

⇒ µi = 0, µ∗
i = −ε + Ei > 0

(31e)

Obviously, there are more than five cases but only these five can occur due to
αiα

∗
i = 0: If one of the variables is free ((31a) and (31b)) or equal to C ((31d)

and (31e)), the other one must be zero. Similar to classification, the cases
(31a) and (31b) form the linear system for step A1 and the cases (31c) – (31e)
are the conditions to be checked in step A2 of the algorithm.

The regression algorithm uses the SVM coefficients ai = αi − α∗
i . With

this abbreviation, the number of variables reduces from 2N to N and many
similarities to classification can be observed. The linear system is almost the
same as (13):

Hkak = ck (32)

with
ak

i = αk
i − α∗k

i

hk
ij = Kij

}

for i ∈ Fk ∪ F∗k

ck
i = yi −

∑

j∈Ak

C
∪A∗k

C

ak
j Kij +

{

−ε for i ∈ Fk

+ε for i ∈ F∗k

(33)

only the right hand side has been modified by ±ε. Step A2 of the algorithm
computes

λk
i = ε + Ek

i

λ∗k
i = ε− Ek

i

for i ∈ Ak
0 ∪ A

∗k
0 (34a)

and

µk
i = −ε− Ek

i

µ∗k
i = −ε + Ek

i

for i ∈ Ak
C ∪ A

∗k
C (34b)

Again, these multipliers are checked for positiveness, and the variable with
the most negative multiplier is transferred to Fk or F∗k, respectively.

3.2 Regression with variable bias term

If the bias term is treated as a variable, (25) can be minimized (∂L∗
d/∂b = 0)

with respect to b resulting in

N∑

i=1

(αi − α∗
i ) = 0 . (35)

Like in classification, this condition removes the last term from (28a) but must
be treated as additional equality constraint:
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min
α, α∗

Jd(α,α∗) =
1

2

N∑

i=1

N∑

j=1

(αi − α∗
i )(αj − α∗

j )Kij

−
N∑

i=1

(αi − α∗
i )yi + ε

N∑

i=1

(αi + α∗
i )

(36a)

s.t. 0 ≤ α
(∗)
i ≤ C , i = 1, . . . , N (36b)

N∑

i=1

(αi − α∗
i ) = 0 (36c)

The Lagrangian of this QP problem is nearly identical to (29):

Ld(α,α∗,λ,λ∗,µ,µ∗, ν) =

1

2

N∑

i=1

N∑

j=1

(αi − α∗
i )(αj − α∗

j )Kij

−
N∑

i=1

(αi − α∗
i )yi + ε

N∑

i=1

(αi + α∗
i )− ν

N∑

i=1

(αi − α∗
i )

−
N∑

i=1

λiαi −
N∑

i=1

µi(C − αi)−
N∑

i=1

λ∗
i α

∗
i −

N∑

i=1

µ∗
i (C − α∗

i )

(37)

We already observed for classification that the Lagrange multiplier ν of the
equality constraint is basically the bias term (ν = −b) that is treated as
a variable. Compared to fixed b, (30) also comprises the equality constraint
(36c), but the five cases (31) do not change. Consequently, the coefficients
ai = αi − α∗

i with i ∈ F ∪ F∗ and the bias term b are computed by solving a
block system having the same structure as (20):

(

Hk e

eT 0

) (
ak

bk

)

=

(
ck

dk

)
} p rows
} 1 row

(38)

with
dk = −

∑

j∈Ak

C
∪A∗k

C

ak
j and e = (1, . . . , 1)T (39)

i.e., the only difference is dk which considers the indices in both Ak
C and

A∗k
C . This system can be solved by the algorithm derived in Sec. 2. The KKT

conditions in step A2 remain exactly the same as (34).

4 Implementation details

The active-set algorithm has been implemented as C MEX-file under MAT-
LAB for classification and regression problems. It can handle both fixed and
variable bias terms. Approximately the following memory is required:
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• N floating point elements for the coefficient vector,
• N integer elements for the index vector,
• p(p + 3)/2 floating point elements for the triangular matrix and the right

hand side of the linear system,

where p is the number of free variables, i.e., those with 0 < α
(∗)
i < C. As

this number is unknown in the beginning, the algorithm starts with an initial
amount of memory and increases it whenever variables are added. The index

vector is needed to keep track of the stets F (∗), A
(∗)
C and A

(∗)
0 . It is also used

as pivot vector for the Cholesky decomposition described in Sec. 4.1. Since
most of the coefficients ai are zero in the optimum, we start with ai = 0 for
i = 1, . . . , N as initial feasible solution.

Since all algorithms assume positive definite kernel functions, the kernel
matrix has a Cholesky decomposition H = RTR, where R is an upper triangu-
lar matrix. For a fixed bias term, the solution of the linear system in step A1 is
found by simple backsubstitution. For variable bias term, the block-algorithm
described in Sec. 2 is used.

4.1 Cholesky decomposition with pivoting

Although the Cholesky decomposition is numerically very stable, the active-
set algorithm uses diagonal pivoting by default, because H may be “nearly
indefinite”, i.e., it may become indefinite by round-off errors during the com-
putation. This occurs e.g. for Gaussians having large widths. There are two
ways to cope with this problem: First, to use Cholesky decomposition with
pivoting, and second, to slightly enlarge the diagonal elements to make H

“more definite”. The first case allows to extract the largest positive definite
part of H = (hij). All variables corresponding to the rest of the matrix are
set to zero then.

i j

↓ −→

• • • • • •

• • • • •

◦ ◦ ◦ ◦ ← i

⋄ ∗ ∗

j ց ⋄ ∗

⋄

Fig. 5. The i-th step of the Cholesky decomposition computes the i-th row (◦) of
the matrix from the already finished elements (•). The diagonal elements (⋄) are
updated whereas the rest (∗) remains untouched.

Usually the Cholesky decomposition is computed using axpy operations
[3]. However, the pivoting strategy needs the updated diagonal elements in
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each step, as they would be available if outer product updates were applied.
Since these require many accesses to matrix elements, a mixed procedure is
implemented that updates only the diagonal elements and uses axpy opera-
tions otherwise:

Compute for i = 1, . . . , p:
Find k = arg max{|h̄ii|, . . . , |h̄pp|}.
Swap lines and columns i and k symmetrically.

Compute rii =
√

h̄ii.
Compute for j = i + 1, . . . , p:

rij =
(
hij −

∑i−1
k=1 rkirkj

)/
rii

h̄jj ← h̄jj − r2
ij

where h̄jj are the updated diagonal elements and “←” indicates the update
process. The result can be written as

PHPT = RTR (40)

with the permutation matrix P. Of course the implementation uses an pivot
vector instead of the complete matrix. Besides that, only the upper triangular
part of R is stored, i.e., only memory for p(p + 1)/2 elements is needed. This
algorithm is almost as fast as the standard Cholesky decomposition.

4.2 Adding variables

Since the active-set algorithm adds or removes only one variable per step,
it is reasonable to modify the existing Cholesky decomposition instead of
computing it form scratch [2]. These techniques are faster but less accurate
than the method described in Sec. 4.1, because they cannot be used with
pivoting. The only way to get along with definiteness problems is to slightly
enlarge the diagonal elements hjj .

If a p-th variable is added to the linear system, a new column and a
new row are appended to H. Since an arbitrary element rij of the Cholesky
decomposition is completely computed from the diagonal element rii and the
sub-columns i and j above the i-th row (see Sec. 4.1), only the last column
needs to be computed:

Compute for i = 1, . . . , p:
rip =

(
hip −

∑i−1
k=1 rkirkp

)/
rii

The columns 1, . . . , p − 1 remain unchanged. This technique is only effective
if the last column is appended. If an arbitrary column is inserted, elements of
R need to be re-computed.
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4.3 Removing variables

Removing variables from an existing Cholesky decomposition is a more so-
phisticated process. For that, we introduce an unknown matrix A ∈ R

M×p

with

H = RTR = ATA and QA =

(
R

0

)

, (41)

i.e., R also results from the QR decomposition of A. Removing a variable
from the Cholesky decomposition is equivalent to removing a column from A:

QÃ =

(
r1 . . . rk−1, rk+1 . . . rp

0

)

, (42)

The non-zero part of the right hand side matrix is of size p × (p − 1) now
because the k-th column is missing. It is “nearly” an upper triangular matrix,
only each of the columns k + 1, . . . , p has one element below the diagonal:

k − 1 k + 1
↓ ↓

• • • • • •
• • • • •
• • • •
∗ ∗ ∗
◦ ∗ ∗
◦ ∗
◦

The sub-diagonal elements are removed by Givens rotations Ωk+1, . . . ,Ωp:

Ωp · · ·Ωk+1Q
︸ ︷︷ ︸

Q̃

Ã =

(
R̃

0

)

(43)

R̃ is the Cholesky factor of the reduced matrix H̃.
However, it should be mentioned that modification techniques do not lead

to a strong acceleration since most of the computation time is currently spent
to check the KKT conditions in A (during step A2 of the algorithm). By
default, the algorithm uses Cholesky decomposition with pivoting when a
variable is added to its linear system, and the above modification strategy
when a variable is removed.

4.4 Approximating the solution

Active-set methods check the KKT conditions of the complete active set in
each step. As pointed out above, this is a huge computational effort which is
only reasonable for algorithms that make enough progress in each step. Typical
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working-set algorithms, on the other hand, follow the opposite strategy: They
perform only simple steps and therefore try to reduce the number of KKT
evaluations to a minimum by certain heuristics.

The complete KKT check of active-set methods can be exploited to approx-
imate the solution with a given number NSVmax of support vectors. Remember
that the NSV support vectors comprise

• Nf free support vectors 0 < α
(∗)
i < C (i.e., those with i ∈ F (∗)).

• NSV −Nf bounded support vectors α
(∗)
i = C (i.e., those with i ∈ A

(∗)
C ).

The algorithm simply stops when at the end of step A3 a solution with more
than NSVmax support vectors is computed for the first time:

• If Nk
SV > NSVmax then stop with the previous solution.

• Otherwise accept the new solution and go to step A1.

The first case can only happen if in step A2 an i ∈ A
(∗)
0 was selected and in

step A3 no variable is moved back to A
(∗)
0 . All other cases do not increase the

number of support vectors.
This heuristic approach does not always lead to a better approximation if

more support vectors are allowed. However, experiments (like in Sec. 5) show
that typically only a small fraction of support vectors significantly reduces
the approximation error.

5 Results

This section shows experimental results for classification and regression.
The proposed active-set method is compared to the well-known working-set
method LIBSVM [1] for different problem settings. Since the optimization
strategies are quite different, mainly the computation time is considered to
measure the performance. For a better understanding of the results it must
be admitted that the implementation of LIBSVM contains some acceleration
techniques (e.g., the use of BLAS routines) that are not yet implemented
for the active-set method. Additionally, it had always 40 MB cache available
because it gets significantly slower if the cache size is chosen too small. All
experiments were done on a 800 MHz Pentium-III PC having 256 MB RAM.

5.1 Classifying demographic data

The first example considers the “Adult” database from the UCI machine
learning repository [6] that has been studied in several publications. The goal
is to determine from 14 demographic features weather a person earns more
than $ 50,000 per year. All features have been normalized to [−1, 1]; nominal
features were converted to numeric values. In order to limit the computation
time in the critical cases, a subset to 1000 samples has been selected as training
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Table 1. Classification: Variation of C

C 100 101 102 103 104 105 106 107

Time 8.7 s 7.0 s 6.9 s 6.5 s 6.9 s 8.0 s 9.3 s 10.2 s
Active NSV 237 214 196 186 176 162 149 141

Set Nf 16 24 52 88 117 130 137 138
Bias 0.9726 1.3980 4.8049 9.7528 29.165 31.678 −6.433 −87.149

Active Time 7.6 s 7.6 s 6.8 s 6.4 s 7.6 s 7.1 s 9.3 s 10.2 s
Set NSV 237 213 199 184 176 163 149 141

(b = 0) Nf 13 25 56 87 114 131 137 138

Time 0.2 s 0.2 s 0.3 s 0.8 s 4.0 s 27.2 s 263.5 s 1082.7 s
LIB NSV 237 214 196 186 176 162 148 142
SVM Nf 16 24 52 88 118 131 137 139

Bias 0.9724 1.3976 4.8049 9.7403 29.156 32.146 −1.182 −110.72

data set. The SVMs use Gauss kernels with width σ = 3 and a precision of
τ = 10−3 to check the KKT conditions.

Table 1 shows the results when the upper bound C is varied. Whereas the
active-set method is nearly insensitive with respect to C, the computation
time of LIBSVM differs by several magnitudes. Typically working-set methods
perform better when the number Nf of free support vectors is small. Also
comparison between the standard SVM and the no-bias SVM (i.e., with bias
term fixed at b = 0) can be found in Tab. 1. It shows that there is no need
for a bias term when positive definite kernels are used. Although a missing
bias generally leads to more support vectors, the results are very close to the
standard SVM here – even if the bias term takes large values.

5.2 Estimating the outlet temperature of a boiler

The following example shows how to use the regression algorithm in system
identification. We use a data set described in detail in [12]. The task is to
estimate the outlet temperature T31 of a high efficiency (condensing) boiler.
The inputs are the system temperature T41, the water flow F31 and the burner

Boiler
-
-
-T41

F31

P11

- T31

T31(k) = f(T41(k), T41(k − 1), T41(k − 2),

F31(k), F31(k − 1), F31(k − 2),

P11(k), P11(k − 1), P11(k − 2),

T31(k − 1), T31(k − 2))

(44)

Fig. 6. Block diagram and regression model of the boiler

output P11. Based on a theoretical analysis, second order dynamics are as-
sumed for the output and all inputs, so the model has 11 regressors, see Fig. 6.
The training data set consists of 3344 samples, the validation data set of 2926
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samples. Table 2 compares the active-set algorithm and LIBSVM when the
upper bound C is varied. The SVM uses Gauss kernels having a width of
σ = 3. The insensitivity zone is properly set to ε = 0.01, the precision used to
check the KKT conditions is τ = 10−4. Both methods compute SVMs with
variable bias term in order to make the results comparable.

Table 2. Regression: Variation of C

C 10−2 10−1 100 101 102 103 104 105

Time 2776 s 713.0 s 159.6 s 28.0 s 11.3 s 11.7 s 17.6 s 27.3 s
Active RMSE 0.0330 0.0164 0.0097 0.0068 0.0062 0.0061 0.0064 0.0069

Set NSV 1938 954 426 142 92 85 92 117
Nf 4 10 20 34 51 74 91 117

Time 8.5 s 4.9 s 3.3 s 3.6 s 8.0 s 55.6 s 314.6 s ∞

LIB RMSE 0.0330 0.0164 0.0097 0.0068 0.0062 0.0062 0.0063 ?
SVM NSV 1939 964 432 147 93 92 102 ?

Nf 6 23 34 45 54 82 100 ?

Concerning computation time, Tab. 2 shows that LIBSVM can efficiently
handle a large number NSV of support vectors (here with only few free αi)
whereas the active-set method shows its strength if NSV is small. For C = 105

LIBSVM did not converge; it was aborted after 12 hours. In this example,
C = 103 is the optimal setting concerning support vectors and error (RMSE
on the validation data set). Also the active-set algorithm’s dependency on N2

f

(see Sec. 1) is not critical: If the number of support vectors increases, typically
most of the Lagrange multipliers are bounded at C so that Nf remains small.
A comparison with Tab. 1 implies that the computation time for the active-
set method mainly depends on the number of support vectors, whereas the
ratio of free and bounded support vectors has strong influence on working-set
methods.

Table 3 compares both algorithms for different precisions τ when the Gaus-
sians’ width is small (σ = 1) and C is set to 103. In this setting all support
vectors are free, which is an extreme case but not unusual [8]. Both algorithms

Table 3. Regression: Variation of τ for σ = 1

τ 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

Time 0.1 s 6.8 s 20.0 s 25.4 s 26.1 s 26.2 s 26.3 s 26.2 s
Active RMSE 0.0581 0.0104 0.0091 0.0090 0.0090 0.0090 0.0090 0.0090

Set NSV 9 71 107 128 133 133 133 133
Nf 0 0 0 0 0 0 0 0

Time 0.5 s 2.9 s 8.2 s 18.0 s 55.8 s 134.7 s 197.1 s 282.7 s
LIB RMSE 0.0315 0.0114 0.0092 0.0091 0.0090 0.0090 0.0090 0.0090
SVM NSV 45 156 130 131 132 131 131 131

Nf 0 0 0 0 0 0 0 0
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do not change the number of support vectors for precisions smaller then 10−5.
Whereas the active-set method does not need more time to fulfill a higher
precision, LIBSVM’s computation time strongly increases. This effect is even
more significant if the Gaussians are broader (σ = 5, see Tab. 4), because the
kernel matrix is ill-conditioned then. Table 4 also confirms the observation
that working-set methods perform worse when the number of free support
vectors increases. Generally, LIBSVM seems to produce more support vec-

Table 4. Regression: Variation of τ for σ = 5

τ 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

Time 0.1 s 1.6 s 10.4 s 12.1 s 12.4 s 12.4 s 12.4 s 12.5 s
Active RMSE 0.0175 0.0077 0.0060 0.0059 0.0059 0.0059 0.0059 0.0059

Set NSV 9 34 89 94 96 96 96 96
Nf 0 4 48 45 45 45 45 45

Time 0.5 s 6.6 s 17.8 s 32.1 s 118.9 s 431.4 s 471.2 s 1217 s
LIB RMSE 0.0220 0.0059 0.0059 0.0060 0.0060 0.0060 0.0060 0.0060
SVM NSV 30 86 99 103 102 102 102 102

Nf 30 85 66 61 57 57 57 57

tors, in particular for low precisions and in the ill-conditioned cases. I.e., the
active-set method leads to more compact models for a given precision.

A final experiment demonstrates the approximation method described in
Sec. 4.4. For C = 103 and σ = 1 the complete model contains 131 support
vectors. However, Fig. 7 shows that the solution can be approximated with
much less support vectors, e.g. 10 – 15 %. Whereas the objective function is still
decreasing, more support vector do not significantly reduce the approximation
error.
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6 Conclusions

An active-set algorithm has been proposed for SVM classification and regres-
sion. The general strategy has been adapted to these problems for both fixed
and variable bias term. The result is a robust algorithm that requires approx-
imately 2N + 1

2N2
f elements of memory, where N is the number of data and

Nf the number of free support vectors. Simulation results show that active-set
algorithms are advantageous

• when the number of SVs is small.
• when the fraction of bounded support vectors is small.
• when high precision is needed.
• when solving regression problems.

Additionally, the algorithm’s KKT check can be exploited to approximate
the solution with less support vectors. Although the method is very robust to
changes in the settings, we admit that working-set techniques are often faster
in standard cases.

Currently, the algorithm changes the active set by only one variable per
step, and most of the computation time is spent to calculate the prediction
errors Ei. Both problems can be significantly improved by introducing gradient
projection steps. If this technique is combined with iterative solvers, also a
large number of free support vectors is possible. This is a promising direction
of future work in SVM optimization methods.
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A The Karush-Kuhn-Tucker conditions

A general constrained optimization problem is given by

F (x) = min
x

(45a)

s.t. G(x) = 0 (45b)

H(x) ≥ 0 (45c)

The Lagrangian of this problem is defined as

L(x,λ,µ) = F (x)−
∑

i

λiGi(x)−
∑

i

µiHi(x) (46)

In the constrained optimum (x∗,λ∗,µ∗) the following first-order necessary
conditions are satisfied [7]:

∇xL(x∗,λ∗,µ∗) = 0 (47a)

Gi(x
∗) = 0 (47b)

Hi(x
∗) ≥ 0 (47c)

µ∗
i ≥ 0 (47d)

λ∗
i Gi(x

∗) = 0 (47e)

µ∗
i Hi(x

∗) = 0 (47f)

These are commonly referred to as Karush-Kuhn-Tucker conditions.


