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Abstract. We present a possibly great improvement while performing semi-
supervised learning tasks from training data sets when only a small fraction of 
the data pairs is labeled. In particular, we propose a novel decision strategy 
based on normalized model outputs. The paper compares performances of two 
popular semi-supervised approaches (Consistency Method and Harmonic Gaus-
sian Model) on the unbalanced and balanced labeled data by using normaliza-
tion of the models’ outputs and without it. Experiments on text categorization 
problems suggest significant improvements in classification performances for 
models that use normalized outputs as a basis for final decision. 

1. Introduction 

Today, there are many learning from data paradigms, the most popular and the most 
used ones being classification and regression models [2]. They belong to the so-called 
supervised learning algorithms in which a learning machine attempts to learn the 
input-output relationship (dependency or function) f(x) by using a training data set X 
= {[x(i), y(i)] ∈ ℜm × ℜ, i = 1,...,n} consisting of n pairs (x1, y1), (x2, y2), …, (xn, yn), 
where the inputs x are m-dimensional vectors x ∈ ℜ m and the labels (or system re-
sponses) y ∈ ℜ are continuous values for regression tasks and discrete (e.g., Boolean) 
for classification problems. Another large group of standard learning algorithms are 
the ones dubbed as unsupervised ones when there are only raw data xi ∈ ℜ m without 
the corresponding labels yi (i.e., there is a ‘no-teacher’ in a shape of labels). The most 
popular, representative, algorithms belonging to this group are various clustering and 
(principal or independent) component analysis routines.  

Recently, however, we are facing more and more instances in which the learning 
problems are characterized by the presence of (usually) a small percentage of labeled 
data only. In this novel setting, the task is to predict the labels (or the belonging to 
some class) of the unlabeled data points. This learning task belongs to the so-called 
semi-supervised or transductive inference problems. The cause for an appearance of 
the unlabeled data points is usually expensive, difficult and slow process of obtaining 
labeled data. Thus, labeling brings the costs and often it is not feasible. The typical 
areas where this happens is the speech processing (due to the slow transcription), text 
categorization (due to huge number of documents, slow reading by humans and their 
general lack of a capacity for a concentrated reading activity), web categorization, 
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and, finally, a bioinformatics area where it is usually both expensive and slow to label 
huge number of data produced.  

Recently several approaches to the semi-supervised learning were proposed. Here, 
we present, compare and improve the two transductive approaches, namely, the har-
monic Gaussian model introduced in [6] and consistency method for semi-supervised 
learning proposed in [5].  

However, none of the methods successfully analyzes the possible problems con-
nected with the so-called unbalanced labeled data, meaning with the situations when 
the number of labeled data differs very much between the classes. We propose the 
normalization of the classifier outputs before a final decision about the labeling is 
done. 

Paper is organized as follows: In section 2 we present the basic forms of the two 
methods. Section 3 introduces the normalization step which improves the perform-
ance of both the consistency method and the harmonic Gaussian model faced with 
unbalanced labeling significantly. It also compares the effects of normalization with 
the results of both methods obtained and presented in [5]. Section 4 concludes the 
presentations here and proposes possible avenues for the further research in this novel 
area of semi-supervised learning. 

2. Consistency Method Algorithm and Harmonic Gaussian 
Model 

There exist a great variety of methods and approaches in semi-supervised learning. 
The powerful software SemiL for solving semi-supervised (transductive) problems, 
used within this study, is capable of using 12 different models for a semi-supervised 
learning (as suggested in [4]). Namely, it can solve the following variously shaped 
semi-supervised learning algorithms: both the hard label approach with the maximiza-
tion of smoothness and the soft label approach with the maximization of smoothness, 
for all three types of models (i.e., Basic Model, Norm Constrained Model and Bound 
Constrained Model) and by using either Standard or Normalized Laplacian. Present-
ing all the variety of results would require much bigger space than it is allowed within 
the constrained space allotted here. That’s why the presentation here will be focused 
on two basic models only, and on an introduction of a normalization step as the first 
possible significant stage in improving results to date. 

Below we present Global consistency model from [5] which is a soft label ap-
proach with the maximization of smoothness that uses a normalized Laplacian with-
out a norm constraint, as well as the Harmonic Gaussian method presented in [6] 
which is a hard label approach with the maximization of smoothness that uses a stan-
dard Laplacian also without a norm constraint. 

2.1 Global consistency model 

The presentation here follows the basic model proposed in [5] tightly. 
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Given a point set X as defined in the Introduction the first l points xi are labeled, 
and the remaining points xu(l + 1 ≤ u ≤ n) are unlabeled. The goal is to predict the 
label of the unlabeled points.  

Let F denote the set of n x c matrices with nonnegative entries. A matrix F = [F1
T , 

…, Fn
T ]T ∈ F corresponds to a classification on the dataset X by labeling each point xi 

as a label yi = arg maxj ≤ c Fij. We can understand F as a vectorial function F : X → Rc 
which assigns a vector Fi to each point xi. Define an n x c matrix Y ∈ F with Yij = 1 if 
xi is labeled as yi = j and Yij = 0 otherwise. Clearly, Y is consistent with the initial 
labels according the decision rule. The algorithm is as follows:  
 

1. Form the affinity matrix W defined by Wij = exp(-|| xi – xj ||2 /2σ2) if i ≠ j and 
Wii = 0. 

2. Construct the matrix S = D-1/2WD-1/2 in which D is a diagonal matrix with its 
(i, i)-element equal to the sum of the i-th row of W. 

3. Iterate F(t+1) = αSF(t)+(1 - α)Y until convergence, where α is a parameter 
in (0, 1). 

4. Let F* denotes the limit of the sequence {F(t)}. Label each point xi as a label 
yi = arg maxj ≤ c Fij

*.  
 
First, one calculates a pairwise relationship W on the dataset X with the diagonal 
elements being zero. In doing this, one can think of a graph G = (V, E) defined on X, 
where the vertex set V is just X and the edges E are weighted by W. In the second 
step, the weight matrix W of G is normalized symmetrically, which is necessary for 
the convergence of the following iteration. The first two steps are exactly the same as 
in spectral clustering [3]. Here, we did not solve the problem in an iterative way as 
shown above. Instead, we solve the corresponding equivalent system of linear equa-
tions (I - αS) F* = Y for F* by using conjugate gradient method which is highly rec-
ommended approach for dealing with huge data set. Also, instead of using the com-
plete graph we calculated the W matrix by using only 10 nearest neighbors. This step 
decreases the accuracy only slightly, but it increases the calculation speed signifi-
cantly. Note that self-reinforcement is avoided since the diagonal elements of the 
affinity matrix are set to zero in the first step (Wij = 0). The model labels each unla-
beled point and assigns it to the class for which the corresponding F* value is the 
biggest, as given in step 4above. 

2.2 Harmonic Gaussian Model 

The presentation here also follows the basic model proposed in [6] tightly. The al-
gorithm is as follows:  
 

1. Form the affinity matrix W defined by Wij = exp(-|| xi – xj ||2 /2σ2). 
2. Construct the diagonal matrix D with its (i, i)-element equal to the sum of the 

i-th row of W. Note that we can use W and D as given in section 2.1 above 
too. 
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3. Form the following two matrices ,ll lu ll

ul uu uu

   
= =   
   

W W D 0
W D

W W 0 D
 

as well as the vector f = [fl    fu]T, where l stands for the labeled data points 
and u for the unlabeled ones. 

4. Solve for fu as follows  fu  = (Duu  -  Wuu) -1 Wulfl  which is the solution for 
the unlabeled data points.  

 
More detailed description of the two basic models, namely, the global consistency 
model and the harmonic Gaussian model can be found in [5] and [6] respectively. 

3. Performance of the Two Models and Possible Improvement 

The extensive simulations on various data sets (as presented in [5]) have indicated 
that both models behave similarly and according to the expectations that with an in-
crease in the number of labeled data points l, the overall models’ accuracies improve 
too. There was just a slightly more superior performance of the consistency model 
from [5] in respect to the harmonic Gaussian model, when faced with a small number 
of unbalanced labeled data. At the same time, the later model performed much better 
for extremely small number of the labeled data as long as they are balanced (meaning 
there is a same number of the labeled points for all the classes. Here, an extremely 
small number meant 1 labeled data per each class only, in the text categorization 
problem from [5]).  

Such a behavior needed a correct explanation and it asked for further investiga-
tions during which several phenomena have been observed. While working with bal-
anced labeled data (meaning with the same number of labeled data per class) har-
monic Gaussian method performed better than the consistency model. On the con-
trary, for a small number of unbalanced labeled data, the harmonic Gaussian model 
performed worse than the consistency one. This indicates a sensitivity of the former 
while working with the unbalanced labeled data.  

At the same time a simulation shows that in the harmonic Gaussian method the 
mean value of the class with less labeled points is lower than for the classes with 
more labeled data. Recall that the final decision is made based on the maximum of the 
F* values and obviously the elements of the class with less labeled data could be as-
signed to different class just due to the fact that the (mean) values of other classes are 
higher.  

This led us to the introduction of a normalization step for the elements of the col-
umn vectors Fi

* bringing them to the vectors with a mean = 0, and with a standard 
deviation = 1. Only now, after the normalization is performed, the algorithm searches 
for the maximal value along the rows of a matrix F* and labels the unlabeled i-th data 
to the class j if F*

ij > F*
ik, k = 1, c , k ≠ j. 

The introduction of the normalization step improves the behavior of the algorithm 
significantly as it is shown in Fig. 1, where we compare performances of the two 
models without normalization as given in [5] to the performances of both models 
incorporating a normalization part.  
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Same as in [5], in the experiment here, we investigated the task of text classifica-
tion using the 20-newsgroups dataset. The chosen topic was rec which contains autos, 
motorcycles, baseball, and hockey from the version 20-news-18828. The articles were 
processed by the Rainbow software package with the following options: (1) passing 
all words through the Porter stemmer before counting them; (2) tossing out any token 
which is on the stop list of the SMART system; (3) skipping any headers; (4) ignoring 
words that occur in 5 or fewer documents. No further preprocessing was done. Re-
moving the empty documents, we obtained 3970 document vectors in a 8014-
dimensional space. Finally the documents were normalized into TFIDF representa-
tion. The cosine distance between points was used here too. The mentioned procedure 
is the same as in [5] just in order to ensure the same experiment’s setting for same 
data set. 

We played with various widths of the Gaussian RBF and the results with a few σ-s 
are shown in Fig. 1. The results in [5] use σ = 0.15 for both harmonic Gaussian 
method and consistency method. The test errors shown are averaged over 100 trials. 
Samples were chosen so that they contain at least one labeled point for each class. 
Thus, the setting of the experiment is identical to the one in [5]. 
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Fig. 1. The error rates of text classification with 3970 document vectors in an 8014-
dimensional space for recreation data sets from version 20-news-18828. At least one labeled 
data for each class must be labeled. The smallest number of labeled data here is therefore 4. 
The normalized model outputs outperform the algorithms without normalization 
 
Several interesting phenomena can be observed in Fig. 1. First, the normalization 
improves the performances of both methods very significantly. This can be observed 
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easily by comparing the error rates between the models with and without normaliza-
tion. The error rates of the consistency method for four labeled points drop from 46% 
to 22%. When 50 points are labeled, the error rates drop from around 22% to about 
13% and similar improvements can be found on the harmonic Gaussian method.  

The only exception is in the case of the later method when there are only four la-
beled points available. In this situation, the error rate of the harmonic Gaussian is 
already much lower than the consistency method’s one, even without normalization 
and the improvement by normalization is not as significant as in other cases. This is a 
consequence of having balanced labeled data points from each class (1 in each class). 
Hence, the mean values of F* along each column are closer to each other and there is 
no need for normalization.  

In contrast, when the number of labeled points in each class is different (i.e., un-
balanced which is the case whenever there is more than 4 labeled data for four classes 
and random labeling is used) the performance gain from normalization is more sig-
nificant. The negative effect of unbalanced data can be observed from following the 
increase in error rate when working with ten data of labeled points and if normaliza-
tion is not applied within the harmonic Gaussian method. Without normalization, the 
harmonic Gaussian method needs approximately forty unbalanced labeled points to 
match its very performance when having four balanced labeled points only. In con-
trast, the performance of the normalized model with ten unbalanced labeled data out-
performs the result for the four balanced points. With a normalization step, the har-
monic Gaussian method seems to be slightly better than the consistency method. This 
is not the case while working without the normalization. The best model for the text 
categorization data in our experiments is a harmonic Gaussian model with width 
equal to 0.3 which achieves an accuracy of 90% with only 50 labeled points out of 
3970 of the total data points. For both methods with normalization of F*, models with 
smaller width parameter perform slightly better than with the larger widths. Finally, 
for a 3970 data, the learning run based on a conjugate gradient algorithm takes only 
about 25 seconds of a CPU time on a 2MHz laptop machine for 100 random tests 
runs.  

4. Conclusions 

The extensive simulations have shown that an introduction of a normalization step 
improves the behavior of both transductive inference models (namely, consistency 
method and harmonic Gaussian one) very significantly. In both methods, the normali-
zation of F* improves the performance up to fifty percents. However, the results are 
inconclusive, because many areas still need to be explored and more investigations 
are needed before final conclusions. For example, in this study we only investigate 
two basic models out of the twelve possible models mentioned earlier. Also, there are 
several parameters associated with these algorithms which can alter the overall per-
formance of the model, e.g., the parameter for constraining the norm of F* (as sug-
gested in [4]) can also have some impact on the performance of the models. This 
means that there may still be some space for improving the performance of the semi-
supervised learning algorithms even further. In addition, the effects of a normalization 
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step for other data set should also be further explored. The work presented here, can 
be treated as an initial step in this area only. It demonstrated that the way how the 
decisions are made from the output of these models can have a significant impact on 
the final classification performance. Our future work will go along the path of finding 
better decision strategies. 
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